Name \qquad

Part 1: Computational Skills

1) Determine whether the series converges or diverges. Circle which test(s) you use. (10 points)
[Divergence Test] [Integral Test] [Comparison Test] [Limit Comparison Test] [Ratio Test] [Root Test] [Geometric Series] [p-Series] [Alternating Series]

$$
\sum_{n=1}^{\infty} \frac{3^{n}+n}{2^{n}-1}
$$

The best test to use here is probably the divergence test:
$\sum_{n=1}^{\infty} \frac{3^{n}+n}{2^{n}-1}$ Diverges because $\lim _{n \rightarrow \infty} \frac{3^{n}+n}{2^{n}-1}=\infty \neq 0$

Some people also did a comparison test to a geometric series. That works too.

2) Determine whether the series converges or diverges. Circle which test(s) you use. (10 points)
[Divergence Test] [Integral Test] [Comparison Test] [Limit Comparison Test] [Ratio Test] [Root Test] [Geometric Series] [p-Series] [Alternating Series]

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{\cos ^{2}(n)}{n^{3}} \\
\sum_{n=1}^{\infty} \frac{\cos ^{2}(n)}{n^{3}} \leq \sum_{n=1}^{\infty} \frac{1}{n^{3}}
\end{gathered}
$$

Use a comparison test:
$\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is a convergent p series $(p=3)$, and so $\sum_{n=1}^{\infty} \frac{\cos ^{2}(n)}{n^{3}}$ converges as well.

3) Determine whether the series converges or diverges. Circle which test(s) you use. (10 points)
[Divergence Test] [Integral Test] [Comparison Test] [Limit Comparison Test] [Ratio Test] [Root Test] [Geometric Series] [p-Series] [Alternating Series]

$$
\sum_{n=1}^{\infty} \frac{n}{(\ln (n))^{n}}
$$

Ratio test is our best bet here:

$$
\lim _{n \rightarrow \infty}\left|\frac{\frac{n+1}{(\ln (n+1))^{n+1}}}{\frac{n}{(\ln (n))^{n}}}\right|=\lim _{n \rightarrow \infty}\left|\frac{n+1}{(\ln (n+1))^{n+1}} \cdot \frac{(\ln (n))^{n}}{n}\right|=\lim _{n \rightarrow \infty}\left|\frac{n+1}{n} \cdot \frac{(\ln (n))^{n}}{(\ln (n+1))^{n+1}}\right|=1 \cdot 0=0<1
$$

Hence $\sum_{n=1}^{\infty} \frac{n}{(\ln (n))^{n}}$ converges.

You could have used root the test as well. Though that's probably a little harder because it involves seeing that $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$, which is probably more involved than seeing that $\lim _{n \rightarrow \infty} \frac{(\ln (n))^{n}}{(\ln (n+1))^{n+1}}=0$

4) Find the radius of the convergence of the power series below. (10 points)

$$
\sum_{k=3}^{\infty} \frac{k^{2}}{5^{k}}(x-2)^{k}
$$

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left|\frac{\frac{(k+1)^{2}}{5^{k+1}}(x-2)^{k+1}}{\frac{k^{2}}{5^{k}}(x-2)^{k}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(k+1)^{2}(x-2)^{k+1} 5^{k}}{5^{k+1}(x-2)^{k} k^{2}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(k+1)^{2}(x-2)}{5 k^{2}}\right|=\frac{|x-2|}{5}<1 \\
|x-2|<5 \\
R=5
\end{gathered}
$$

5) Find a power series expansion of the function below, centered at $x=1$. Write your answer using sigma notation. (10 points)

$$
\frac{1}{x^{2}}
$$

Let's do a Taylor series:

k	$f^{(k)}(x)$	$f^{(k)}(1)$	Whole Term
0	$\frac{1}{x^{2}}=x^{-2}$	1	1
1	$-2 x^{-3}$	-2	$-2(x-1)$
2	$6 x^{-4}$	6	$\frac{6(x-1)^{2}}{2!}$
3	$-24 x^{-5}$	-24	$-\frac{24(x-1)^{3}}{3!}$
4	$120 x^{-6}$	120	$\frac{120(x-1)^{4}}{4!}$

$$
\begin{aligned}
& \frac{1}{x^{2}}=1-2(x-1)+\frac{6(x-1)}{2}-\frac{24(x-1)^{3}}{6}+\frac{120(x-1)^{4}}{24}+\cdots \\
& =\sum_{k=0}^{\infty}(-1)^{k} \frac{(k+1)!(x-1)^{k}}{k!}=\sum_{k=0}^{\infty}(-1)^{k}(k+1)(x-1)^{k}
\end{aligned}
$$

You could also use the derivative of a geometric series expansion of $\frac{1}{1-(1-x)}$. It probably actually requires less computational work, but more conceptual understanding and algebraic maturity. That trick doesn't work for $\frac{1}{x^{2}}$ directly, however, because it won't be centered at $x=1$.

6) Find a power series expansion of the function below, centered at $x=0$. (10 points)

$$
\cos (5 x)
$$

Let's do a Taylor series:

k	$f^{(k)}(x)$	$f^{(k)}(0)$	Whole Term
0	$\cos (5 x)$	1	1
1	$-5 \sin (5 x)$	0	0
2	$-25 \cos (5 x)$	-25	$-\frac{25 x^{2}}{2!}$
3	$125 \sin (5 x)$	0	0
4	$625 \cos (5 x)$	625	$\frac{5^{4} x^{4}}{4!}$

$$
\cos (5 x)=1-\frac{25 x^{2}}{2}+\frac{5^{4} x^{4}}{4!}+\cdots=\sum_{k=0}^{\infty}(-1)^{k} \frac{5^{2 k} x^{2 k}}{(2 k)!}
$$

If you knew the power series expansion for $\cos (u)$, you could have used $u=5 x$. Just make sure you show how your work.

Part 2: Conceptual Understanding

7) Let $f(x)$ be a function satisfying with power series expansion $\sum_{k=0}^{\infty} a_{k}(x-2)^{k}$, centered at $x=2$ with radius of convergence 7 . It is known that $f(2)=5$. What is $\sum_{k=0}^{\infty} a_{k}(2-2)^{k}$? (10 points)

$$
\sum_{k=0}^{\infty} a_{n}(2-2)^{n}=5
$$

The power series expansion centered at $x=2$ with radius 7 , meaning they are equal on the interval $(-5,9)$. That includes $x=2$, so $\sum_{k=0}^{\infty} a_{n}(2-2)^{n}=f(2)=5$.
(Yes most of the terms are zero, but a_{0} is not)

8) If a power series has radius of convergence 4 and the interval of convergence does not include either endpoint, for how many integer x-values can the series possibly converge? (10 points)

8

If $R=4$, then that means that the interval has width 8 , such as for example $(-4,4)$ or $(0,8)$. Those intervals only contain 7 integers, such as $\{1,2,3,4,5,6,7\}$. However, if it starts at a fraction, it can contain 8 integers, such as $(0.5,8.5)$. This still has radius 4 , and center 4.5 .

Part 3: Applications

9) Below is a Taylor series (centered at $x=0$) that represents a function. Suppose we are going to ask a computer to evaluate this function at $x=1$. The computer uses the first 13 terms. How accurate is the computer's approximation? It is known that f is infinitely differentiable, and each derivative is no larger than 5. (10 points)

$$
\sum_{k=0}^{\infty} \frac{(k-3) x^{k}}{k}
$$

The formula for error is $\frac{M(x-0)^{k+1}}{(k+1)!}$, which in this case is:

$$
\frac{5(1)^{14}}{14!}=\frac{5}{14!}
$$

**Note: This question is a bit messed up in several ways. First, the first 13 terms would include the $k=0$ term, making the 14 th term $k=13$, so full credit was given for $\frac{5}{13!}$ as well. Also, what's up with $k=0$? We would get a zero in the denominator, so this power series is impossible. Anybody that noticed that received extra credit.

Part 4: Review

10) Find the integral below. (5 points)

$$
\begin{aligned}
& \int x \sec ^{2}(x) d x \\
& \int x \sec ^{2}(x) d x=x \tan (x)-\int \tan (x) d x=x \tan (x)-\int \frac{\sin (x)}{\cos (x)} d x=x \tan (x)+\ln |\cos (x)|+C \\
& u=x
\end{aligned} \quad \begin{aligned}
& d v=\sec ^{2}(x) d x \\
& d u=d x \quad v=\tan (x)
\end{aligned}
$$

11) Find the integral below. (5 points)

$$
\begin{gathered}
\int \sin (x) \cos ^{4}(x) d x=-\int u^{4} d u=-\frac{u^{5}}{5}+C=-\frac{\cos ^{5}(x)}{5}+C \\
u=\cos (x) \\
d u=-\sin (x) d x
\end{gathered}
$$

Part 5: Small Bonus

12) A restaurant offers 20 different entries. Your party has 7 people, and you all want different meals so you can share. How many meal choices are there? Use correct mathematical notation. (2 points)

$$
\binom{20}{7}=\frac{20!}{7!13!}
$$

