Show using induction that $6|7^n - 1$ for all $n = 2, 3, 4, \cdots$

Base case: $7^2 - 1 = 48 = 6 \cdot 8$, so indeed $6|7^2 - 1$.

Induction hypothesis: Assume $6|7^k - 1$ for some k.

Induction step: From the induction hypothesis, we know that there is some *m* such that $7^k - 1 = 6m$. Hence we have:

$$7^{k+1} - 1 = 7 \cdot 7^{k} - 1$$

= 7^k - 1 + 6 \cdot 7^{k}
= 6m + 6 \cdot 7^{k}
= 6(m + 7^{k})

Thus $6|7^{k+1} - 1$.

Therefore $6|7^n - 1$ for all n = 2, 3, 4, ...