Name \qquad Solutions \qquad Discrete I, Quiz 11

Show using induction that any "L-shaped" board as shown below can be tiled by the tromino shown below. The size of the board can be any $2^{n} \times 2^{n}$ for $n=1,2,3, \ldots$

The base case is trivial: a $2^{1} \times 2^{1}$ grid is just a single tile:

Induction Hypothesis: Assume that any $2^{k} \times 2^{k}$ board can be tiled using the tile.

Induction step: Suppose we have a $2^{k+1} \times 2^{k+1}$ board. We will sub-divide it as shown below.

The image here isn't quite right, as it appears to be 8×8. By hand I would draw it with parts left out, illustrating that k is arbitrary and the size could be anything.

As can be seen from the diagram, we now have four $2^{k} \times 2^{k}$ "L-shaped" boards. These can be tiled via the induction hypothesis, and together they give a tiling of the new board.

Therefore all "L-shaped" boards of size $2^{n} \times 2^{n}$ can be tiled, no matter what positive integer n is.

