Name \qquad Solutions \qquad

Choose ONE of the following problems.

1) Define the sequence of real numbers $c_{1}, c_{2}, c_{3}, \ldots$ as follows.

$$
\begin{aligned}
c_{1} & =0 \\
c_{n} & =c_{\left\lfloor\frac{n}{2}\right\rfloor}+n^{2}
\end{aligned}
$$

Show that $c_{n}<4 n^{2}$ for all indices $n=1,2,3, \ldots$

Base case:

$$
c_{1}=0<4 \cdot 1^{2}
$$

Is this enough? c_{2} depends on c_{1}, then c_{3} depends on c_{1} again. c_{4} depends on c_{2} and so forth, so indeed we see that they'll all be covered.

Induction hypothesis: For some index k, assume each of the following:

$$
\begin{gathered}
c_{1}<4 \cdot 1^{2} \\
c_{2}<4 \cdot 2^{2} \\
\vdots \\
c_{k}<4 \cdot k^{2}
\end{gathered}
$$

Induction step: We now show that the inequality is true in the $k+1^{\text {th }}$ case:

$$
\begin{aligned}
c_{k+1} & =c_{\left\lfloor\frac{k+1}{2}\right\rfloor}+(k+1)^{2} \\
& <4 \cdot\left(\left\lfloor\frac{k+1}{2}\right\rfloor\right)^{2}+(k+1)^{2} \\
& \leq 4 \cdot\left(\frac{k+1}{2}\right)^{2}+(k+1)^{2} \\
& =4 \cdot \frac{(k+1)^{2}}{4}+(k+1)^{2} \\
& =(k+1)^{2}+(k+1)^{2} \\
& =2(k+1)^{2} \\
& <4(k+1)^{2}
\end{aligned}
$$

Hence $c_{k+1}<4(k+1)^{2}$.

Therefore by induction, for all indices $n, c_{n}<4 \cdot n^{2}$.
2) Show that all integers at least 12 can be written in terms of 3 and 5 . That is, there are x and y such that $n=3 x+5 y$.

Scratch work:

$$
k+1=k-2+3
$$

Here we see that we'll need the $k-2^{\text {th }}$ case the prove the $k+1^{\text {th }}$ case, so we'll do induction three at a time. This means we'll need three base cases, and three assumptions in the induction hypothesis.

Base cases:

$$
\begin{aligned}
& 12=3 \cdot 4 \\
& 13=2 \cdot 5+3 \\
& 14=3 \cdot 3+5
\end{aligned}
$$

Induction hypothesis: Assume each of the following for some index k :

$$
\begin{aligned}
k & =3 a+5 b \\
k-1 & =3 c+5 d \\
k-2 & =3 e+5 f
\end{aligned}
$$

Induction step: We now prove the $k+1^{\text {th }}$ case:

$$
\begin{aligned}
k+1 & =k-2+3 \\
& =3 e+5 f+3 \\
& =3 e+3+5 f \\
& =3(e+1)+5
\end{aligned}
$$

Therefore $k+1$ can be written in terms of $3 s$ and $5 s$. Hence by induction all integers at least 12 can be written in this form.

