Name <u>Solutions</u>

For each of the following, determine whether the function f is one-to-one. For those that are not, provide a short justification. When not specified, the domain and codomain are \mathbb{R} .

1. f(x) = 2x + 5

This is one to one, as can be seen below.

Suppose $f(x_1) = f(x_2)$ $\therefore 2x_1 + 5 = 2x_2 + 5$ $\therefore 2x_1 = 2x_2$ $\therefore x_1 = x_2$

2.
$$f(x) = 2x^2$$

This is not one to one, as can be seen below.

$$f(-1) = 2(-1)^2 = 2 = 2(1)^2 = f(1)$$

3. $f(x) = x^2$ with domain $[0, \infty)$

This is one to one, as can be seen below.

Suppose
$$f(x_1) = f(x_2)$$

 $\therefore x_1^2 = x_2^2$
 $\therefore x_1 = \pm x_2$
 $\therefore x_1 = x_2$ (Getting here used the fact that both x_1 and x_2 are nonnegative)

4. f(x) = [x]

This is not one to one, as can be seen below.

$$f(1.6) = [1.6] = 1 = [1.2] = f(1.2)$$

5. $f(x) = \lfloor x \rfloor$ with domain {0, 1, 2, ... }

This is not one to one, as for integers x and y, [x] = [y] iff x = y.