Name \qquad Solutions \qquad

For each of the following, determine whether the function f is one-to-one. For those that are not, provide a short justification. When not specified, the domain and codomain are \mathbb{R}.

1. $f(x)=2 x+5$

This is one to one, as can be seen below.

Suppose $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\therefore 2 x_{1}+5=2 x_{2}+5$
$\therefore 2 x_{1}=2 x_{2}$
$\therefore x_{1}=x_{2}$
2. $f(x)=2 x^{2}$

This is not one to one, as can be seen below.

$$
f(-1)=2(-1)^{2}=2=2(1)^{2}=f(1)
$$

3. $f(x)=x^{2}$ with domain $[0, \infty)$

This is one to one, as can be seen below.

Suppose $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\therefore x_{1}^{2}=x_{2}^{2}$
$\therefore x_{1}= \pm x_{2}$
$\therefore x_{1}=x_{2}$ (Getting here used the fact that both x_{1} and x_{2} are nonnegative)
4. $f(x)=\lfloor x\rfloor$

This is not one to one, as can be seen below.

$$
f(1.6)=\lfloor 1.6\rfloor=1=\lfloor 1.2\rfloor=f(1.2)
$$

5. $f(x)=\lfloor x\rfloor$ with domain $\{0,1,2, \ldots\}$

This is not one to one, as for integers x and $y,\lfloor x\rfloor=\lfloor y\rfloor$ iff $x=y$.

