Name \qquad Solutions \qquad Discrete I, Quiz 19

Consider the two relations given below on \mathbb{R}.

$$
\begin{gathered}
x R y \text { iff } x \leq y \\
x S y \text { iff } y-x \geq 2
\end{gathered}
$$

Choose and complete 2 of the following problems. Justify all answers.

1) Is R reflexive?
2) Is R symmetric?
3) Is R antisymmetric?
4) Is R transitive?
5) Is R total?
R is reflexive as $x \leq x$ for all real x.
R is not symmetric. Consider $x=1$ and $y=2$. Then $1 \leq 2$ but not $2 \leq 1$.
R is antisymmetric. If $x \leq y$ and $y \leq x$, then $x=y$.
R is transitive. If $x \leq y$ and $y \leq z$, then $x \leq z$.
R is total: consider any two real numbers x and y. If $x \leq y$ we're done. If not then $x>y$, so $y \leq x$.

Choose and complete 2 of the following problems. Justify all answers.

1) Is S reflexive?
2) Is S symmetric?
3) Is S antisymmetric?
4) Is S transitive?
5) Is S total?
S is not reflexive. Consider $x=1$, then $x-x=0 \nsupseteq 2$
S is not symmetric. Consider $x=1$ and $y=4$. Then $4-1 \geq 2$ so $1 S 4$. However, $1-4 \not \geq 2$, so not $4 S 1$.
S is antisymmetric. Consider the equations $y-x \geq 2$ and $x-y \geq 2$. These can never both be true at the same time, in particular look at the first equation multiplied by negative 1: $x-y<-2$.
S is transitive. Suppose $x S y$ and $y S z$. That is to say that $y-x \geq 2$ and $z-y \geq 2$. Adding these we get:

$$
\begin{gathered}
y-x+z-y \geq 4 \\
\therefore z-x \geq 4 \geq 2 \\
\therefore x S z
\end{gathered}
$$

S is not total. Consider for instance 1 and 2 . Neither $1-2 \geq 2$ nor $2-1 \geq 2$.

