Name Solutions Discrete I, Quiz 19

Consider the two relations given below on \mathbb{R} .

$$xRy \text{ iff } x \le y$$

 $xSy \text{ iff } y - x \ge 2$

Choose and complete 2 of the following problems. Justify all answers.

- 1) Is *R* reflexive?
- 2) Is R symmetric?
- 3) Is *R* antisymmetric?
- 4) Is R transitive?
- 5) Is *R* total?

R is reflexive as $x \le x$ for all real x.

R is not symmetric. Consider x = 1 and y = 2. Then $1 \le 2$ but not $2 \le 1$.

R is antisymmetric. If $x \le y$ and $y \le x$, then x = y.

R is transitive. If $x \le y$ and $y \le z$, then $x \le z$.

R is total: consider any two real numbers x and y. If $x \le y$ we're done. If not then x > y, so $y \le x$.

Choose and complete 2 of the following problems. Justify all answers.

- 1) Is S reflexive?
- 2) Is S symmetric?
- 3) Is S antisymmetric?
- 4) Is S transitive?
- 5) Is *S* total?

S is not reflexive. Consider x = 1, then $x - x = 0 \ge 2$

S is not symmetric. Consider x=1 and y=4. Then $4-1\geq 2$ so 1S4. However, $1-4\geq 2$, so not 4S1.

S is antisymmetric. Consider the equations $y-x \ge 2$ and $x-y \ge 2$. These can never both be true at the same time, in particular look at the first equation multiplied by negative 1: x-y < -2.

S is transitive. Suppose xSy and ySz. That is to say that $y - x \ge 2$ and $z - y \ge 2$. Adding these we get:

$$y - x + z - y \ge 4$$

$$\therefore z - x \ge 4 \ge 2$$

$$\therefore xSz$$

S is not total. Consider for instance 1 and 2. Neither $1-2 \ge 2$ nor $2-1 \ge 2$.