Name \qquad Solutions \qquad

Use the code below to answer the following questions.

```
for i from 0 to n-1
    "Line 2"
    for j from 0 to n*n
        "Line 4"
        for k from 0 to i
            "Line 6"
```

1) If "Line 2 " is the line of interest and everything else is trivial, what is the asymptotic growth rate of this algorithm?

$$
O(n)
$$

2) If "Line 4 " is the line of interest and everything else is trivial, what is the asymptotic growth rate of this algorithm?

$$
O\left(n \cdot n^{2}\right)=O\left(n^{3}\right)
$$

Notice that the second loop has n^{2} iterations!!
3) If "Line 6" is the line of interest and everything else is trivial, what is the asymptotic growth rate of this algorithm?

$$
O\left(n^{4}\right)
$$

At first glance maybe it's actually faster than this. If we the innermost loop actually ran n times we would get $\Theta\left(n^{4}\right)$ for sure. As is it requires a more in depth analysis, but indeed our intuition is accurate that actually is $\Theta\left(n^{4}\right)$
4) If "Line 2" and "Line 4" are the lines of interest and everything else is trivial, what is the asymptotic growth rate of this algorithm?

$$
O\left(n+n^{3}\right)=O\left(n^{3}\right)
$$

5) If "Line 4 " and "Line 6" are the lines of interest and everything else is trivial, what is the asymptotic growth rate of this algorithm?

$$
O\left(n^{3}+n^{4}\right)=O\left(n^{4}\right)
$$

