Use the code below to answer the following questions.

```plaintext
x = 17
for i from 0 to n-1
    x = x * (x-2)
```

1) Assuming all arithmetic can be done in hardware, what is the asymptotic runtime of this algorithm?

\[O(n) \]

2) Assuming all arithmetic can be done in hardware, what is the asymptotic space requirement of this algorithm?

\[O(1) \]

3) If \(n \) is large enough that the arithmetic needs to be done in software, what is the asymptotic space requirement of this algorithm?

If \(m \) is the size of the largest value that \(x \) gets to, it is

\[O(\log(m)) \]

Exactly what this is, is unclear. To find an upper bound, let us assume that the third line is “\(x = x \cdot x \)”. In this case we construct the table below to see the first four values of \(n \):

<table>
<thead>
<tr>
<th>(n)</th>
<th>(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(17^2)</td>
</tr>
<tr>
<td>2</td>
<td>(17^4)</td>
</tr>
<tr>
<td>3</td>
<td>(17^8)</td>
</tr>
<tr>
<td>4</td>
<td>(17^{16})</td>
</tr>
</tbody>
</table>

From this we see that the value of \(x \) is \(O(17^{2^n}) \). Hence the space requirement is:

\[O(\log(17^{2^n})) = O(2^n \cdot \log(17)) = O(2^n) \]