\qquad

1) Show that $3 n+1<3^{n}$ for all $n=6,7,8, \ldots$ (20 points)
2) Show that a $2^{n} \times 2^{n}$ chess board with one random tile removed can be tiled with the piece shown below. (20 points)

3) Show that all integers $n \geq 15$ can be written as:

$$
n=3 x+7 y
$$

where x and y are integers. (20 points)
4) Let $f(x)=\lceil 3 x\rceil$ with domain \mathbb{R}. What is the range of f ? (5 points)
5) Is the function $f(x)=3 x+1$ one to one? Justify your answer. (10 points)
6) Decompose the function $f(x)=(2 x+4)^{3}$ into two simpler functions. Be sure to explicitly give the rule for both of your answers. (5 points)
7) Reindex the summation below to start at $i=0$. (5 points)

$$
\sum_{i=3}^{n+17} 2^{i}
$$

8) Give an example of a sequence that satisfies each of the following: (5 points) Nondecreasing

Not increasing Not constant
9) List all strings of length at most 2 that are members of $\{a, b\}^{*}$. (5 points)
10) List all the substrings of the string "abc". (5 points)
11) Let H_{n} be the $n^{\text {th }}$ harmonic number as defined below.

$$
H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}
$$

Show the following for all $m=1,2,3, \ldots$

$$
\sum_{n=1}^{m} H_{n}=(n+1) H_{n}-n
$$

(20 bonus points)

