1) Draw the digraph of the relation  $\{(a, a), (a, b), (a, c), (b, a)\}$  (5 points)





For the rest of the problems on this page, use the relation R on  $\mathbb{R}$  defined by  $(x, y) \in R$  if and only if x - y = 2

2) Is R reflexive? Justify your answer. (5 points)

No, consider x = y = 1. Then  $x - y = 1 - 1 = 0 \neq 2$ .



3) Is R symmetric? Justify your answer. (5 points)

No. Consider x = 4, y = 2. Then x - y = 4 - 2 = 2, so 4R2. On the other hand,  $y - x = 2 - 4 = -2 \neq 2$ .



4) Is R transitive? Justify your answer. (5 points)

No. Consider x = 4, y = 2, z = 0. Then xRy because 4 - 2 = 2 and yRz because 2 - 0 = 2. However, xRz fails because  $4 - 0 = 4 \neq 2$ .



5) Find a partition of  $\{a, b, c, d, e, f, g\}$  with 3 parts. (5 points)

 $\{\{a, b, c\}, \{d, e\}, \{f, g\}\}$ 



Compute each of the following mod 13. 6) 10 + 8 (5 points)

 $10 + 8 \equiv 18 \equiv 5 \mod 13.$ 



## 7) 7 - 11 (5 points)

### $7-11 \equiv -4 \equiv 9 \mod 13.$



8) Solve  $7x \equiv 4 \pmod{13}$ . (5 points)

First note that  $7^{-1} = 2$  because  $2 \cdot 7 \equiv 1 \mod 13$ .

 $7x \equiv 2 \mod 13$  $2 \cdot 7x \equiv 2 \cdot 2 \mod 13$  $x \equiv 4 \mod 13$ 



Use the following pseudocode to answer the questions on this page. Assume n is the length of the string s.

```
count = 0
for i from 0 to n - 1
if s_i == 'd'
count = count + 1
s_i = 'T'
return s, count
```

9) For the input s="abcdedcba" what is the return value for count? (5 points)

2



10) For the same input, what is the return value for s? (5 points)

"abcTeTcba"



11) For the same input, exactly how many comparisons of any kind are performed? (5 points)

#### 19, here's why:



12) For the same input, exactly how many times is count assigned a value? (5 points)

3, one for the initialization, and twice when the conditional is true.



13) What is the "big-oh" growth rate of the function  $f(n) = 2n^3 + 4n^2 - 5n$ ? (5 points)

# $O(n^{3})$



14) Call your answer to the previous question g(n). Justify your answer to the previous by finding the constant multiple and point that it starts to apply: (Fill in the boxes; show and supporting work or derivation below) (10 points)

 $f(n) \leq 6 \cdot g(n)$  whenever  $n \geq 1$ 

 $2n^3 + 4n^2 - 5n \le 2n^3 + 4n^2 \le 2n^3 + 4n^3 \le 6n^3$ 



15) Consider the code below. If "Line 3" is the line of interest and everything else is trivial, what is the asymptotic growth rate of this algorithm? (5 points)

for i from 0 to n-1
for j from 0 to i
 "Line 3"

## $0(n^2)$

The first loop runs *n* times. In these *n* iterations, the second loop runs 1, 2, 3, ..., and finally *n* times. Adding these up we get  $\frac{n(n+1)}{2} = O(n^2)$ 



Use the code below to answer questions on this page.

$$x = 1$$
  
for i from 0 to n-1  
$$x = x * 5$$

16) Assuming all arithmetic can be done in hardware, what is the asymptotic runtime of this algorithm? <sup>(5 points)</sup>



# 0(n)

17) Assuming all arithmetic can be done in hardware, what is the asymptotic space requirement of this algorithm? (5 points)

# 0(1)



For the next two problems assume that we have a multiplication algorithm that requires  $\Theta(m \log(m))$  runtime and  $\Theta(\log(m))$  space to multiply two *m*-bit numbers.

Note that this algorithm doesn't currently exist. It is conjectured that an algorithm with this runtime might exist though, but has not been discovered.

18) If n is large enough that the arithmetic needs to be done in software, what is the asymptotic space requirement of this algorithm?

(10 points – 5 for the answer, 5 for the simplification/derivation)

First note that x gets as large as  $5^n$ . It takes  $O(\log(5^n)) = O(n \log(5)) = O(n)$  space. That is x will take O(n) bits just to store. Hence we get:

O(n)

The additional space required for the multiplication can be reused, so it doesn't change the asymptotic growth rate:  $O(n + \log(m)) = O(n)$ .



19) If n is large enough that the arithmetic needs to be done in software, what is a bound on the asymptotic runtime of this algorithm? (10 bonus points)

Again note that x gets as large as  $5^n$ . It takes  $O(\log(5^n)) = O(n \log(5)) = O(n)$  space. That is x will take O(n) bits just to store. Hence m = O(n). Then we get that each multiplication requires  $O(m \log(m)) = O(n \log(n))$  time. However, there are n multiplications, so we get:  $O(n^2 \log(n))$ 

