Name \qquad Solutions \qquad

1) Draw the digraph of the relation $\{(a, a),(a, b),(a, c),(b, a)\}$ (5 points)

Question 1 r=0.42

For the rest of the problems on this page, use the relation R on \mathbb{R} defined by $(x, y) \in R$ if and only if $x-y=2$
2) Is R reflexive? Justify your answer. (5 points)

No, consider $x=y=1$. Then $x-y=1-1=0 \neq 2$.

3) Is R symmetric? Justify your answer. (5 points)

No. Consider $x=4, y=2$. Then $x-y=4-2=2$, so $4 R 2$.
On the other hand, $y-x=2-4=-2 \neq 2$.

Question $3 \mathrm{r}=0.19$

4) Is R transitive? Justify your answer. (5 points)

No. Consider $x=4, y=2, z=0$. Then $x R y$ because $4-2=2$ and $y R z$ because $2-0=2$. However, $x R z$ fails because $4-0=4 \neq 2$.

Question 4 r=0.39

5) Find a partition of $\{a, b, c, d, e, f, g\}$ with 3 parts. (5 points)

$$
\{\{a, b, c\},\{d, e\},\{f, g\}\}
$$

Compute each of the following mod 13.
6) $10+8$ (5 points)
$10+8 \equiv 18 \equiv 5 \bmod 13$.

7) $7-11$ (5 points)
$7-11 \equiv-4 \equiv 9 \bmod 13$.

8) Solve $7 x \equiv 4(\bmod 13)$. (5 points)

First note that $7^{-1}=2$ because $2 \cdot 7 \equiv 1 \bmod 13$.
$7 x \equiv 2 \bmod 13$
$2 \cdot 7 x \equiv 2 \cdot 2 \bmod 13$
$x \equiv 4 \bmod 13$

Use the following pseudocode to answer the questions on this page. Assume n is the length of the string s.

```
count = 0
    for i from 0 to n - 1
            if si
                    count = count + 1
                    si}= 'T'
return s, count
```

9) For the input $s=$ "abcdedcba" what is the return value for count? (5 points)

2

Question 9 r=0.41

10) For the same input, what is the return value for s ? (5 points)
"abcTeTcba"

11) For the same input, exactly how many comparisons of any kind are performed? (5 points)

19, here's why:
The input has a length of $n=9$. Hence there are 9 character comparisons: $s_{i}==$ ' d^{\prime}. There are also a total of 10 integer comparisons between i and $n-1$: for i from 0 to $\mathrm{n}-1$. The $10^{\text {th }}$ is because 9 are true and the $10^{\text {th }}$ is false.

Question 11 r=0.58

12) For the same input, exactly how many times is count assigned a value? (5 points)

3 , one for the initialization, and twice when the conditional is true.

Question $12 \mathrm{r}=0.18$

13) What is the "big-oh" growth rate of the function $f(n)=2 n^{3}+4 n^{2}-5 n$? (5 points)

$$
O\left(n^{3}\right)
$$

14) Call your answer to the previous question $g(n)$. Justify your answer to the previous by finding the constant multiple and point that it starts to apply: (Fill in the boxes; show and supporting work or derivation below) (10 points)

$$
\begin{gathered}
f(n) \leq 6 \cdot g(n) \text { whenever } n \geq 1 \\
2 n^{3}+4 n^{2}-5 n \leq 2 n^{3}+4 n^{2} \leq 2 n^{3}+4 n^{3} \leq 6 n^{3}
\end{gathered}
$$

15) Consider the code below. If "Line 3 " is the line of interest and everything else is trivial, what is the asymptotic growth rate of this algorithm? (5 points)

```
for i from 0 to n-1
    for j from 0 to i
    "Line 3"
```

$$
O\left(n^{2}\right)
$$

The first loop runs n times. In these n iterations, the second loop runs $1,2,3, \ldots$, and finally n times. Adding these up we get $\frac{n(n+1)}{2}=O\left(n^{2}\right)$

Question 15 r=0

Use the code below to answer questions on this page.
$x=1$

```
for i from 0 to n-1
    x = x * 5
```

16) Assuming all arithmetic can be done in hardware, what is the asymptotic runtime of this algorithm? (5 points)
$O(n)$

17) Assuming all arithmetic can be done in hardware, what is the asymptotic space requirement of this algorithm? (5 points)

$$
O(1)
$$

For the next two problems assume that we have a multiplication algorithm that requires $\Theta(m \log (m))$ runtime and $\Theta(\log (m))$ space to multiply two m-bit numbers.
Note that this algorithm doesn't currently exist. It is conjectured that an algorithm with this runtime might exist though, but has not been discovered.
18) If n is large enough that the arithmetic needs to be done in software, what is the asymptotic space requirement of this algorithm?
(10 points - 5 for the answer, 5 for the simplification/derivation)

First note that x gets as large as 5^{n}. It takes $O\left(\log \left(5^{n}\right)\right)=O(n \log (5))=O(n)$ space. That is x will take $O(n)$ bits just to store. Hence we get:

$$
O(n)
$$

The additional space required for the multiplication can be reused, so it doesn't change the asymptotic growth rate: $O(n+\log (m))=O(n)$.

19) If n is large enough that the arithmetic needs to be done in software, what is a bound on the asymptotic runtime of this algorithm?
(10 bonus points)

Again note that x gets as large as 5^{n}. It takes $O\left(\log \left(5^{n}\right)\right)=O(n \log (5))=O(n)$ space. That is x will take $O(n)$ bits just to store. Hence $m=O(n)$. Then we get that each multiplication requires $O(m \log (m))=O(n \log (n))$ time. However, there are n multiplications, so we get:

$$
O\left(n^{2} \log (n)\right)
$$

