Name \qquad Solutions \qquad

1) Use induction to prove the equality below for all positive integers n.

$$
\sum_{i=1}^{n} 6 i=3 n(n+1)
$$

$B C$:

$$
\sum_{i=1}^{1} 6 i=6 \cdot 1=3 \cdot 2=3 \cdot 1 \cdot(1+1)
$$

$\mathrm{IH}:$ Assume $\sum_{i=1}^{k} 6 i=3 k(k+1)$ for some positive integer k.

IS: Now we show the " $k+1^{\text {th }}$ case"

$$
\begin{aligned}
\sum_{i=1}^{k+1} 6 i & =6+12+18+\cdots+6 k+6 k(k+1) \\
& =[6+12+18+\cdots+6 k]+6(k+1) \\
& =[3 k(k+1)]+6(k+1) \\
& =3 k(k+1)+6(k+1) \\
& =3[k(k+1)+2(k+1)] \\
& =3(k+1)[k+2] \\
& =3(k+1)(k+2)
\end{aligned}
$$

Therefore, for all positive integers n we have proven:

$$
\sum_{i=1}^{n} 6 i=3 n(n+1)
$$

Some common mistakes have color-coded comments:

- Blue = Mathematical mistakes, such as:
- Incorrect algebra
- Green = things where the mathematical grammar doesn't make sense, such as:
- "i" outside of a summation
- Calling a number "true" instead of referring to an equation.
- Assuming a number instead of referring to an equation.
- Orange = things that should be true, but that weren't justified, such as:
- Circular reasoning - writing down what you're trying to prove as if that were the proof.

Common logical error (In both the BC and IS): "Proving" something that is obvious, such as $6=6$ or $3 k(k+1)=3 k(k+1)$.

