\qquad

1) Let R be the relation on \mathbb{Z} defined by $x R y$ if and only if $5 \mid x-y$. It is known that R is an equivalence relation (You don't need to prove this, I just told you it's true). What elements are in the equivalence class [3]?

Note that this relation is merely "mod 5". Do you see why? Hence:

$$
[3]=\{-2,3,8,13,18,23, \ldots\}
$$

2) Compute $4 \cdot 5 \bmod 7$.

$$
4 \cdot 5 \equiv 20 \equiv 6(\bmod 7)
$$

3) Solve $2 x+5=8 \bmod 17$.

Note that $2^{-1} \equiv_{17} 9$ because $2 \cdot 9 \equiv_{17} 18 \equiv_{17} 1$.

$$
\begin{aligned}
2 x+5 & \equiv_{17} 8 \\
2 x & \equiv_{17} 3 \\
9 \cdot 2 x & \equiv_{17} 9 \cdot 3 \\
1 x & \equiv_{17} 27 \\
x & \equiv 1_{17} 10
\end{aligned}
$$

