Name \qquad Solutions \qquad

1) What is the asymptotic runtime of the algorithm shown below?
```
for i from 0 to n-1
    "Line 2"
    for j from 0 to n-1
        "Line 4"
    for k from 0 to n-1
            "Line 6"
O(n')
```

2) Call your answer to the previous question $g(n)$. Justify your answer to the previous question by finding the constant multiple and point that it starts to apply: (Fill in the boxes; show and supporting work or derivation below)

$$
f(n) \leq 2 \cdot g(n) \text { whenever } n \geq 1
$$

The runtime is $n(n+n)=n^{2}+n^{2} \leq 2 n^{2}$.
3) In the pseudocode below, "Search_Database (m)" is the function of interest, and runs in $O(h(m))$ time. Everything else is trivial. What is the asymptotic growth rate of this algorithm? (Bonus Question) (Technically to simplify this like I do below, we need to know that $h(m)$ is an increasing function. But this is a safe assumption because it measures the runtime of an algorithm.)

```
for i from 0 to n-1
```

 "Search_Database(i)"
 for \(j\) from 0 to \(n-1\)
 "Return Records(j)"
 for \(k\) from i to j
 "Do_stuff(i,j,k)"
 First note that we say that everything other than "Search_Database (m)" is trivial, so we can safely ignore lines 4 and 6. Now "Search_Database (m)" runs n times with inputs ranging from 0 to $n-1$. Hence we have the runtime $O(n \cdot h(n))$ as derived below.

Plugging in each i we get a runtime of $O(h(1))+O(h(2))+\cdots+O(h(n-1))$.
Now note that $O(h(i))$ is $O(h(n))$ because $i \leq n$ so $h(i) \leq h(n)$. Hence we get:

$$
O(h(n))+O(h(n))+\cdots+O(h(n))=O(n \cdot h(n))
$$

