Name $\qquad$

For all the problems on this page, use the function defined below. If you need more space, give your answer to the right and mark which problem it completes.

$$
\begin{aligned}
f:\{1,2,3\} & \rightarrow\{0,1,2,3,4,5,6,7,8,9\} \\
x & \rightarrow x^{2}
\end{aligned}
$$

1) What is the domain of $f$ ? $(-2 /+1$ points
2) What is the codomain of $f$ ? (-2/+2 points)
3) What is the range of $f$ ? $(-2 /+2$ points $)$
4) What is $f^{-1}(4)$ ? (-3/+1 points)
5) What is $f^{-1}(5)$ ? (-1/+2 points)
6) What is $f(2)$ ? $(-3 /+1$ points)
7) Sketch a graph of $f \cdot(-1 /+3$ points $)$
8) Use an arrow diagram to illustrate $f$. ( $-1 /+3$ points)
9) Let $S$ be the range of $f$, and a new function $g:\{1,2,3\} \rightarrow S$ is defined via $g(x)=f(x)$.

What is $g^{-1}$ ? Define it completely. (bonus question; $-0 /+5$ points)
10) Define the numbers $c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, \ldots$ via $c_{0}=1$ and $c_{n}=c_{\left[\frac{n}{3}\right]}+\frac{4}{3}$. Prove, using strong induction, that $c_{n}<2 n$ for all $n \geq 2$. (-10/+10 points)

For the problems on this page, consider the relation $R$ on $\mathbb{Z}$ defined by $x R y$ if and only if $x^{3}=y^{3}$. Choose and complete THREE of these problems, and THREE only. If more answers are given, only the first THREE will be graded. ( $-5 /+5$ points each $)$
11) Is $R$ reflexive? Justify your answer.
12) Is $R$ symmetric? Justify your answer.
13) Is $R$ antisymmetric? Justify your answer.
14) Is $R$ transitive? Justify your answer.
15) Is $R$ total? Justify your answer.
16) Is $R$ irreflexive? Justify your answer.

Choose and complete ONE of these problems, and ONE only. If more answers are given, only the first ONE will be graded. (-10/+10 points)
17) Define a relation $S$ on $\mathbb{Z}$ by $x S y$ if and only if $x$ divides $y$. Show that $S$ is a partial order relation.
18) Show that the function $f$, below, is both one to one and onto.

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \rightarrow 5 x+7
\end{aligned}
$$

