\qquad

For all the problems on this page, use the function defined below. If you need more space, give your answer to the right and mark which problem it completes.

$$
\begin{aligned}
f:\{1,2,3\} & \rightarrow\{0,1,2,3,4,5,6,7,8,9\} \\
x & \mapsto x^{2}
\end{aligned}
$$

1) What is the domain of f ? $(-2 /+1$ points $)$
$\{1,2,3\}$

2) What is the codomain of f ? $(-2 /+2$ points $)$
$\{0,1,2,3,4,5,6,7,8,9\}$

3) What is the range of f ? $(-2 /+2$ points $)$
$\{1,4,9\}$

4) What is $f^{-1}(4) ?(-3 /+1$ points $)$

2

5) What is $f^{-1}(5)$? (-1/+2 points)

This does not exist

6) What is $f(2)$? ($-3 /+1$ points)

4

7) Sketch a graph of f. $(-1 /+3$ points $)$

0		0	
0			0
0			
0			
0			
0		0	
0			
0			
0	0		
	0	0	0

8) Use an arrow diagram to illustrate $f .(-1 /+3$ points $)$

The diagram to the right is correct.

Credit was given for another interesting answer though.
Some people expanded the domain to
$\{1,2,3,4,5,6,7,8,9\}$ and made the digraph of f, treating it as a relation. Technically this is answering a different question, but it contains essentially the same information.

9) Let S be the range of f, and a new function $g:\{1,2,3\} \rightarrow S$ is defined via $g(x)=f(x)$. What is g^{-1} ? Define it completely. (bonus question; $-0 /+5$ points)

$$
\begin{aligned}
g^{-1}:\{1,4,9\} & \rightarrow\{1,2,3\} \\
x & \mapsto \sqrt{x}
\end{aligned}
$$

OR

$$
g:\{1,4,9\} \rightarrow\{1,2,3\} \text { defined by } g(x)=\sqrt{x}
$$

OR

$$
g(x)=\sqrt{x} \text { with domain }\{1,4,9\} \text { and codomain }\{1,2,3\} .
$$

10) Define the numbers $c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, \ldots$ via $c_{0}=1$ and $c_{n}=c_{\left[\frac{n}{3}\right]}+\frac{4}{3}$. Prove, using strong induction, that $c_{n}<2 n$ for all $n \geq 2$. (-10/+10 points)

Base Case:

$$
c_{2}=c_{\left\lfloor\frac{2}{3}\right\rfloor}+\frac{4}{3}=c_{0}+\frac{4}{3}=1+\frac{4}{3}=\frac{7}{3}<4=2 \cdot 2
$$

Or is this the only base case that is needed? Let's see. c_{3} is defined in terms of c_{1} which is not covered. Hence we must also show that $c_{3}<2 \cdot 3$:

$$
c_{3}=c_{\left[\frac{3}{3}\right\rfloor}+\frac{4}{3}=c_{1}+\frac{4}{3}=\frac{7}{3}+\frac{4}{3}=\frac{11}{3}<6=2 \cdot 3
$$

How about c_{4} ? That is also defined in terms of c_{1}, as is c_{5} so we need to check those as well:

$$
\begin{aligned}
& c_{4}=c_{\left[\frac{4}{3}\right]}+\frac{4}{3}=c_{1}+\frac{4}{3}=\frac{7}{3}+\frac{4}{3}=\frac{11}{3}<8=2 \cdot 4 \\
& c_{5}=c_{\left[\frac{5}{3}\right]}+\frac{4}{3}=c_{1}+\frac{4}{3}=\frac{7}{3}+\frac{4}{3}=\frac{11}{3}<10=2 \cdot 5
\end{aligned}
$$

How about c_{6} ? That is defined in terms of c_{2}, and so finally induction will start to take hold.

Induction Hypothesis: Let k be an arbitrary integer and assume each of the following inequalities hold:

$$
\begin{gathered}
c_{2}<2 \cdot 2 \\
c_{3}<2 \cdot 3 \\
\quad \vdots \\
c_{k}<2 \cdot k
\end{gathered}
$$

Induction Step: Now we prove the inequality is true when $n=k+1$.

$$
c_{k+1}=c_{\left\lfloor\frac{k+1}{3}\right\rfloor}+\frac{4}{3}<2 \cdot\left\lfloor\frac{k+1}{3}\right\rfloor+\frac{4}{3} \leq 2\left(\frac{k+1}{3}\right)+\frac{4}{3}=\frac{2 k}{3}+\frac{2}{3}+\frac{4}{3}=\frac{2 k}{3}+2<2 k+2=2(k+1)
$$

For the problems on this page, consider the relation R on \mathbb{Z} defined by $x R y$ if and only if $x^{3}=y^{3}$. Choose and complete THREE of these problems, and THREE only. If more answers are given, only the first THREE will be graded. ($-5 /+5$ points each)

For each of these questions, note that when you are proving a relation satisfies these properties, you are proving that a certain statement is true for all points in the set. This must be done with arbitrary values, say x, y, and z. I repeat, because we've said it about a dozen times in class any many people are still making this mistake: you cannot prove something is always true by computing one or two or even a million examples.

To prove that it is false, however, you need only find one counterexample.
11) Is R reflexive? Justify your answer.
R is reflexive because for any integer $x, x^{3}=x^{3}$.

12) Is R symmetric? Justify your answer.
R is symmetric because for any integers x and y, we know that if $x^{3}=y^{3}$ then $y^{3}=x^{3}$.

13) Is R antisymmetric? Justify your answer.
R is antisymmetric because if we have two integers x and y such that both $x^{3}=y^{3}$ and $y^{3}=x^{3}$, then we can take the cube root to get $\sqrt[3]{x^{3}}=\sqrt[3]{y^{3}}$. This simplifies to $x=y$.

14) Is R transitive? Justify your answer.
R is transitive because if we know that both $x^{3}=y^{3}$ and $y^{3}=z^{3}$, then we can substitute one form of y^{3} into the other to get $x^{3}=z^{3}$.

Question 14

15) Is R total? Justify your answer.
R is not total because there are two numbers that are not comparable in either direction. In particular 0 and 1 . Neither $0^{3}=1^{3}$ nor $1^{3}=0^{3}$.
You must check both. That's the point of total, that neither $x R y$ nor $y R x$.

16) Is R irreflexive? Justify your answer.
R is not irreflexive because there is a number that is not not related to itself. In particular $5.5^{3}=5^{3}$ and so $5 R 5$. Hence 5 is not, not related to itself.

Choose and complete ONE of these problems, and ONE only. If more answers are given, only the first ONE will be graded. (-10/+10 points)
17) Define a relation S on \mathbb{Z} by $x S y$ if and only if x divides y. Show that S is a partial order relation.

This question was a little trickier than I intended because of 0 . While we cannot divide 0 by 0 , it is true that 0 divides 0 , because $0 \cdot k=0$. It's a quirky difference between the division operator (that returns a number) and the divides operator (that returns a Boolean).

It also gets messy dealing with negative numbers. So let's just say that we're only going to deal with positive numbers.

(i.e. I didn't take off points for struggling or overlooking zero or negative numbers)

First let us flesh out this relation a bit. It is given that $x S y$ if and only if $x \mid y$. This means that there is an integer k such that $x k=y$.

Reflexive: S is reflexive because we can always choose $k=1$ to get $x \cdot 1=x$, so $x \mid x$.

Antisymmetric: S is antisymmetric because if we have both $x \mid y$ and $y \mid x$, then that gives the following equations:

$$
\begin{aligned}
& x k_{1}=y \\
& y k_{2}=x
\end{aligned}
$$

Combining these we see that $x k_{1} k_{2}=x$. Cancel x to obtain $k_{1} k_{2}=1$. But both k_{1} and k_{2} are positive integers, and the only product of integers that gives 1 is $1 \cdot 1=1$. Hence $x=y$.

Transitive: S is transitive because if we have both $x \mid y$ and $y \mid z$, then that gives the following equations:

$$
\begin{aligned}
& x k_{1}=y \\
& y k_{2}=z
\end{aligned}
$$

Plugging one into the other we get:

$$
x k_{1} k_{2}=z
$$

Hence $x \mid z$.

18) Show that the function f, below, is both one to one and onto.

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \rightarrow 5 x+7
\end{aligned}
$$

For one-to-one, recall that this means that every one y-value comes from only one x-value. Algebraically this is the following logical statement:

$$
\begin{gathered}
\forall_{x_{1}, x_{2} \in \mathbb{R}}\left(f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}\right) \\
f\left(x_{1}\right)=f\left(x_{2}\right) \\
\therefore 5 x_{1}+7=5 x_{2}+7 \\
5 x_{1}=5 x_{2} \\
x_{1}=x_{2}
\end{gathered}
$$

For onto, recall that this means that every y-value is attained by some x-value. Algebraically this is the following logical statement:

$$
\forall_{y \in \mathbb{R}} \exists_{x \in \mathbb{R}}(f(x)=y)
$$

** Do scratch work to figure out that you want to choose $x=\frac{y-7}{5}$ **

Choose $x=\frac{y-7}{5}$ and simplify $f(x)$:

$$
f(x)=f\left(\frac{y-7}{5}\right)=5\left(\frac{y-7}{5}\right)+7=(y-7)+7=y
$$

