Codename \qquad
(Do not put your name on the test; write your name and codename on the code sheet)

1) Show that for all $n \in \mathbb{Z}_{\geq 1}$:

$$
\sum_{i=1}^{n} i \cdot 2^{i}=2+(n-1) 2^{n+1}
$$

2) Let A be the set of all people. Choose ONE of the following relations and show that it is an equivalence relation:
R_{1} is the relation on A such that $x R y$ if and only if x and y have the same shoe size. R_{2} is the relation on A such that $x R y$ if and only if x and y are either both male, or both female.
3) Let $f: \mathbb{Z} \rightarrow \mathbb{R}$ be the relation given by $f(x)=\sqrt{x}$ when possible. Sketch a graph of f then prove or disprove that f is a function.
4) Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be the relation given by $f(x)=\sqrt{x}$. Prove or disprove that f is a function.
5) Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be the relation given by $f(x)= \pm \sqrt{x}$. Prove or disprove that f is a function.
6) Let R be the graph of the entire smiley face below. Is R a relation? If so what is it as a set? If not, why not?

Codename \qquad Transitions, Page 3
(Do not put your name on the test; write your name and codename on the code sheet)
7) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function given by $f(x)=2 x+4$. Sketch a graph of f and prove or disprove that f is one-to-one.
8) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function given by $f(x)=2 x+4$. Prove or disprove that f is onto.
9) Let A be a set, and define a binary relation \rtimes on A. (For example, \mathbb{R} and addition satisfy this). Now suppose that \rtimes is actually associative: $a \rtimes b \rtimes c$ is unambiguous in that $(a \rtimes b) \rtimes c=a \rtimes(b \rtimes c)$ for all $a, b, c \in A$. Sketch a proof of the fact that for any $n \in \mathbb{Z}_{\geq 3}$:

$$
a_{1} \rtimes a_{2} \rtimes \cdots \rtimes a_{n} \text { is unambiguous. }
$$

Consider the following function diagram:

$$
\begin{array}{rllll}
\text { ragram: } & \xrightarrow{f_{1}} & \mathbb{R} & \xrightarrow{f_{2}} & \mathbb{R} \\
f_{3} \downarrow & \cup & \downarrow f_{4} & & \downarrow f_{5} \\
\mathbb{Q} & \overrightarrow{f_{6}} & \mathbb{Z} & \overrightarrow{f_{7}} & \mathbb{R}
\end{array}
$$

10) Find functions $f_{1}, f_{2}, \ldots, f_{7}$ such that the diagram is commutative in the left square, but not in the right square.
$f_{1}(x)=$
$f_{2}(x)=$
$f_{3}(x)=$
$f_{4}(x)=$
$f_{5}(x)=$
$f_{6}(x)=$
$f_{7}(x)=$
11) Is it true that $f_{4} \circ f_{1}=f_{6} \circ f_{3}$? Why?
12) Is it true that $f_{5} \circ f_{2}=f_{7} \circ f_{4}$? Why?

Codename \qquad
(Do not put your name on the test; write your name and codename on the code sheet)

Let A be the set of all monomials involving the variables x and or y. (A monomial is a term consisting of variables to nonnegative integer powers, all multiplied by each other).
For example, the following are all such monomials:

$$
x \quad x^{6} \quad x y^{2} \quad x^{240} y
$$

As a nonexample, the following are not elements of A :

$$
2 x \quad x y^{2} z^{7} t \quad x^{-1} y \quad x^{2.5}
$$

Define the total degree, d, of a monomial as the sum of the exponents.
For example $d\left(x y^{7}\right)=8$ while $d\left(x^{4} y^{2}\right)=6$.

Finally, for monomials a_{1} and a_{2}, define the relation \prec on A via $a_{1} \prec a_{2}$ if and only if one of the following is satisfied:
$d\left(a_{1}\right)<d\left(a_{2}\right)$
OR
$d\left(a_{1}\right)=d\left(a_{2}\right)$ and the degree of x in a_{1} is less than the degree of x in a_{2}.

As one last step, define \leqslant as $" \prec$ or $=$ ".
13) Fill in each of the following boxes with either \preccurlyeq or \succcurlyeq :

$$
\begin{aligned}
& x^{2} y^{6} \square x^{3} y^{6} \\
& x^{2} y^{6} \square x^{3} y^{5} \\
& x^{2} y^{6} \square x^{1} y^{7}
\end{aligned}
$$

Prove or disprove each of the following: (Use the back page and clearly label each problem)
$14) \preccurlyeq$ is reflexive.
$15) \preccurlyeq$ is symmetric.
$16) \preccurlyeq$ is antisymmetric.
17) \preccurlyeq is transitive.
18) All elements of A are comparable under \leqslant.
$19) \preccurlyeq$ is an equivalence relation.
$20) \preccurlyeq$ is a total ordering.

