(Do not put your name on the test; write your name and codename on the code sheet)

1) Show that for all $n \in \mathbb{Z}_{\geq 1}$:

$$\sum_{i=1}^{n} i \cdot 2^{i} = 2 + (n-1)2^{n+1}$$

2) Let A be the set of all people. Choose ONE of the following relations and show that it is an equivalence relation:

$$R_1$$
 is the relation on A such that xRy if and only if x and y have the same shoe size.

 R_2 is the relation on A such that xRy if and only if x and y are either both male, or both female.

3) Let $f: \mathbb{Z} \to \mathbb{R}$ be the relation given by $f(x) = \sqrt{x}$ when possible. Sketch a graph of f then prove or disprove that f is a function.

4) Let $f: \mathbb{R} \to \mathbb{C}$ be the relation given by $f(x) = \sqrt{x}$. Prove or disprove that f is a function.

5) Let $f: \mathbb{R} \to \mathbb{C}$ be the relation given by $f(x) = \pm \sqrt{x}$. Prove or disprove that f is a function.

6) Let *R* be the graph of the entire smiley face below. Is *R* a relation? If so what is it as a set? If not, why not?

(Do not put your name on the test; write your name and codename on the code sheet)

7) Let $f: \mathbb{R} \to \mathbb{R}$ be the function given by f(x) = 2x + 4. Sketch a graph of f and prove or disprove that f is one-to-one.

8) Let $f: \mathbb{R} \to \mathbb{R}$ be the function given by f(x) = 2x + 4. Prove or disprove that f is onto.

9) Let *A* be a set, and define a binary relation \rtimes on *A*. (For example, \mathbb{R} and addition satisfy this). Now suppose that \rtimes is actually associative: $a \rtimes b \rtimes c$ is unambiguous in that $(a \rtimes b) \rtimes c = a \rtimes (b \rtimes c)$ for all $a, b, c \in A$. Sketch a proof of the fact that for any $n \in \mathbb{Z}_{\geq 3}$:

 $a_1 \rtimes a_2 \rtimes \cdots \rtimes a_n$ is unambiguous.

Consider the following function diagram:

10) Find functions f_1, f_2, \dots, f_7 such that the diagram is commutative in the left square, but not in the right square.

 $f_{1}(x) = f_{2}(x) = f_{3}(x) = f_{4}(x) = f_{5}(x) = f_{6}(x) = f_{7}(x) = f_{7}(x)$

11) Is it true that $f_4 \circ f_1 = f_6 \circ f_3$? Why?

12) Is it true that $f_5 \circ f_2 = f_7 \circ f_4$? Why?

Codename

Transitions, Page 5

(Do not put your name on the test; write your name and codename on the code sheet)

Let A be the set of all monomials involving the variables x and or y. (A <u>monomial</u> is a term consisting of variables to nonnegative integer powers, all multiplied by each other).

For example, the following are all such monomials:

 $x \quad x^6 \quad xy^2 \quad x^{240}y$

As a nonexample, the following are not elements of *A*:

 $2x \quad xy^2z^7t \quad x^{-1}y \quad x^{2.5}$

Define the <u>total degree</u>, d, of a monomial as the sum of the exponents. For example $d(xy^7) = 8$ while $d(x^4y^2) = 6$.

Finally, for monomials a_1 and a_2 , define the relation \prec on A via $a_1 \prec a_2$ if and only if one of the following is satisfied:

 $d(a_1) < d(a_2)$ OR $d(a_1) = d(a_2)$ and the degree of x in a_1 is less than the degree of x in a_2 .

As one last step, define \leq as " < or = ".

13) Fill in each of the following boxes with either \leq or \geq :

x^2y^6	x^3y^6
x^2y^6	x^3y^5
x^2y^6	x^1y^7

Prove or disprove each of the following: (Use the back page and clearly label each problem)

14) \leq is reflexive.

15) \leq is symmetric.

16) \leq is antisymmetric.

17) \leq is transitive.

18) All elements of A are comparable under \leq .

19) \leq is an equivalence relation.

20) \leq is a total ordering.