\qquad
(Do not put your name on the test; write your name and codename on the code sheet)

1) Show that for all $n \in \mathbb{Z}_{\geq 1}$:

$$
\sum_{i=1}^{n} i \cdot 2^{i}=2+(n-1) 2^{n+1}
$$

Because of the universal I'm thinking induction might be a good idea. With the summation, I see a clear direction to go because I know I'll be able to use the induction hypothesis.

Base Case: For $n=1$ the left hand side is:

$$
\sum_{i=1}^{i} i \cdot 2^{i}=1 \cdot 2^{1}=2
$$

The right hand side is:

$$
2+(1-1) 2^{1+1}=2+0=2
$$

These are equal, and so the base case is satisfied.

Induction Hypothesis: Assume for some $k \in \mathbb{N}$ that

$$
\sum_{i=1}^{k} i \cdot 2^{i}=2+(k-1) 2^{k+1}
$$

Induction Step: Indeed the " $k+1$ " case is satisfied:

$$
\begin{aligned}
\sum_{i=1}^{k+1} i \cdot 2^{i} & =\left(\sum_{i=1}^{k} i \cdot 2^{i}\right)+\left((k+1) 2^{k+1}\right) \\
& =2+(k-1) 2^{k+1}+(k+1) 2^{k+1} n \\
& =2+2 k 2^{k+1} \\
& =2+k 2^{k+2} \\
& =2+((k+1)-1) 2^{(k+1)+1}
\end{aligned}
$$

Thus $\sum_{i=1}^{k+1} i \cdot 2^{i}=2+((k+1)-1) 2^{(k+1)+1}$ which is the " $k+1^{\prime \prime}$ case.

Therefore by induction the statement holds true for all $n \in \mathbb{N}$. That is:

$$
\forall_{z \in \mathbb{N}}\left(\sum_{i=1}^{n} i \cdot 2^{i}=2+(n-1) 2^{n+1}\right)
$$

2) Let A be the set of all people. Choose ONE of the following relations and show that it is an equivalence relation:
R_{1} is the relation on A such that $x R y$ if and only if x and y have the same shoe size.
R_{2} is the relation on A such that $x R y$ if and only if x and y are either both male, or both female.

We are given that R is a relation, so we need only show that R is reflexive, symmetric, and transitive.

Shoe size:
Reflexive: $x R x$ because x certainly has the same shoe size as himself.
Symmetric: Assume $x R y$. That is to say that x and y have the same shoe size. Rewording this we can say that y and x have the same shoe size, so $y R x$.
Transitive: Assume $x R y$ and $y R z$. That is to say that x and y have the same shoe size, and also that y and z have the same shoe size. Thus all three have the same shoe size as y, so in particular x and z have the same shoe size: $x R z$.

Gender:

Reflexive: $x R x$ because x certainly has the same gender as himself.
Symmetric: Assume $x R y$. That is to say that x and y have the same gender. Rewording this we can say that y and x have the same gender, so $y R x$.
Transitive: Assume $x R y$ and $y R z$. That is to say that x and y have the same gender, and also that y and z have the same gender. Thus all three have the same gender as y, so in particular x and z have the same gender: x Rz.

Therefore R is an equivalence relation.

Be careful that here x, y, and z are people. Yes they have a shoe size and gender, but they are people.

3) Let $f: \mathbb{Z} \rightarrow \mathbb{R}$ be the relation given by $f(x)=\sqrt{x}$ when possible. Sketch a graph of f then prove or disprove that f is a function.

f is not a function because its domain is not \mathbb{Z}. In particular, $f(-1)=\sqrt{-1}=i \notin \mathbb{R}$.

4) Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be the relation given by $f(x)=\sqrt{x}$. Prove or disprove that f is a function.
f is a function. By construction f is a relation, it remains to be proven that f^{\prime} s domain is \mathbb{R} and that it is well defined.

Domain:
Let $x \in \mathbb{R}$. Then the square root of x is some complex number. Hence $f(x) \in \mathbb{C}$. (Actually, either $f(x) \in \mathbb{R}$ or $f(x) \in i \mathbb{R}$, but either way $f(x)$ is a complex number).

Well Defined:
Given a complex number x, \sqrt{x} represents one specific number (the principal square root), hence $f(x)$ is just one number and so f is well defined.

Thus f is a function.

5) Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be the relation given by $f(x)= \pm \sqrt{x}$. Prove or disprove that f is a function.
f is not a function because it is not well defined. In particular $f(4)= \pm 2$. Whaaat? $f(4)=2$ but also $f(-4)=-2$?! This f is not a function.

6) Let R be the graph of the entire smiley face below. Is R a relation? If so what is it as a set? If not, why not?

Yes, R is a relation:

$$
R=\left\{(x, y) \mid x^{2}+y^{2}=4 \text { or } y=\frac{x^{2}}{3}-1 \text { or }(x, y)=(-1,1) \text { or }(x, y)=(1,1)\right\}
$$

\qquad
(Do not put your name on the test; write your name and codename on the code sheet)
7) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function given by $f(x)=2 x+4$. Sketch a graph of f and prove or disprove that f is one-to-one.

Indeed f is one-to-one:

Suppose $f(a)=f(b)$ for some $a, b \in \mathbb{R}$. Then:

$$
\begin{gathered}
2 a+4=2 b+4 \\
\therefore 2 a+2 b \\
\therefore a=b
\end{gathered}
$$

8) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function given by $f(x)=2 x+4$. Prove or disprove that f is onto.

Indeed f is onto:

Suppose $y \in \mathbb{R}$. Then choose $x=\frac{y-4}{2}$. Then:

$$
f(x)=f\left(\frac{y-4}{2}\right)=\left(\frac{y-4}{2}\right) 2+4=y
$$

9) Let A be a set, and define a binary relation \rtimes on A. (For example, \mathbb{R} and addition satisfy this). Now suppose that \rtimes is actually associative: $a \rtimes b \rtimes c$ is unambiguous in that $(a \rtimes b) \rtimes c=a \rtimes(b \rtimes c)$ for all $a, b, c \in A$. Sketch a proof of the fact that for any $n \in \mathbb{Z}_{\geq 3}$:

$$
a_{1} \rtimes a_{2} \rtimes \cdots \rtimes a_{n} \text { is unambiguous. }
$$

The universal makes me think that induction might work on this.

Base case: The base case is given to us as \rtimes is associative.

Induction hypothesis: Assume for some $k \in \mathbb{Z}_{\geq 3}$ that $a_{1} \rtimes a_{2} \rtimes \cdots \rtimes a_{k}$ is unambiguous.

Induction step: Now consider $a_{1} \rtimes a_{2} \rtimes \cdots \rtimes a_{k+1}$. There are k different groupings to consider:

$$
\left(a_{1} \rtimes \cdots \rtimes a_{l}\right) \rtimes\left(a_{l+1} \rtimes \cdots \rtimes a_{k+1}\right)
$$

That is, above l could be any of $1,2, \ldots, k$.

Now because of the inductive hypothesis each parenthesized portion is unambiguous. Then by associativity we may regroup it to include one more term in the left portion:

$$
\left(a_{1} \rtimes \cdots \rtimes a_{l}\right) \rtimes\left(a_{l+1} \rtimes\left(a_{l+2} \rtimes \cdots \rtimes a_{k+1}\right)\right)=\left(\left(a_{1} \rtimes \cdots \rtimes a_{l}\right) \rtimes a_{l+1}\right) \rtimes\left(a_{l+2} \rtimes \cdots \rtimes a_{k+1}\right)
$$

We see then taking $l=1$ we may regroup to obtain the $l=2$ parenthesization, and then regroup again to obtain the $l=3$ parentheisization. By doing this $k-1$ times we have all the different parenthisizations, and so $a_{1} \rtimes a_{2} \rtimes \cdots \rtimes a_{k+1}$ is unambiguous!

Therefore by induction any $n \in \mathbb{Z}_{\geq 3}, a_{1} \rtimes a_{2} \rtimes \cdots \rtimes a_{n}$ is unambiguous.

Consider the following function diagram:

10) Find functions $f_{1}, f_{2}, \ldots, f_{7}$ such that the diagram is commutative in the left square, but not in the right square.

There are many answers, l'll try to choose very simple ones:
$f_{1}(x)=x$
$f_{2}(x)=x$
$f_{3}(x)=1$
$f_{4}(x)=1$
$f_{5}(x)=x$
$f_{6}(x)=x$
$f_{7}(x)=x$

11) Is it true that $f_{4} \circ f_{1}=f_{6} \circ f_{3}$? Why?

Yes, because:

$$
\begin{aligned}
& f_{4}\left(f_{1}(x)\right)=1 \\
& f_{6}\left(f_{3}(x)\right)=1
\end{aligned}
$$

12) Is it true that $f_{5} \circ f_{2}=f_{7} \circ f_{4}$? Why?

No, because:

$$
\begin{aligned}
& f_{5}\left(f_{2}(x)\right)=x \\
& f_{7}\left(f_{4}(x)\right)=1
\end{aligned}
$$

\qquad
(Do not put your name on the test; write your name and codename on the code sheet)

Let A be the set of all monomials involving the variables x and or y. (A monomial is a term consisting of variables to nonnegative integer powers, all multiplied by each other).
For example, the following are all such monomials:

$$
x \quad x^{6} \quad x y^{2} \quad x^{240} y
$$

As a nonexample, the following are not elements of A :

$$
2 x \quad x y^{2} z^{7} t \quad x^{-1} y \quad x^{2.5}
$$

Define the total degree, d, of a monomial as the sum of the exponents.
For example $d\left(x y^{7}\right)=8$ while $d\left(x^{4} y^{2}\right)=6$.

Finally, for monomials a_{1} and a_{2}, define the relation $<$ on A via $a_{1}<a_{2}$ if and only if one of the following is satisfied:
$d\left(a_{1}\right)<d\left(a_{2}\right)$
OR
$d\left(a_{1}\right)=d\left(a_{2}\right)$ and the degree of x in a_{1} is less than the degree of x in a_{2}.

As one last step, define \preccurlyeq as " \prec or $=$ ".
13) Fill in each of the following boxes with either \leqslant or \succcurlyeq :

$$
\begin{aligned}
& x^{2} y^{6} \preccurlyeq x^{3} y^{6} \\
& x^{2} y^{6} \preccurlyeq x^{3} y^{5} \\
& x^{2} y^{6} \succcurlyeq x^{1} y^{7}
\end{aligned}
$$

Prove or disprove each of the following: (Use the back page and clearly label each problem)
$14) \leqslant$ is reflexive.
Proof: Let $a \in A$, wlog $a=x^{b} y^{c}$. Indeed comparing $x^{b} y^{c}$ to itself we see that the total degree is the same, and the degree of x is the same. Hence $x^{b} y^{c} \leqslant x^{b} y^{c}$
$15) \preccurlyeq$ is symmetric.
disproof: Consider x and x^{2}. $x \leqslant x^{2}$, but $x^{2} * x$
$16) \preccurlyeq$ is antisymmetric.
Proof: Suppose $a \leqslant b$ and $b \leqslant a$. Wlog let $a=x^{r} y^{s}$ and $b=x^{p} y^{q}$. Then $x^{r} y^{s} \leqslant x^{p} y^{q}$ and also $x^{r} y^{s} \geqslant x^{p} y^{q}$. If the total degree were different, only one of these would hold. Hence the total degree is the same. Then if the degree of x were different, only one of these would hold. Hence the degree in x is the same.

Now because the total degree is the same, and the degree in x is the same, then the degree in y is the same. That is to say, $r=p$ and $s=q$. Hence $a=x^{r} y^{s}=b$.
17) \leqslant is transitive.

Proof: Suppose $a \preccurlyeq b$ and $b \preccurlyeq c$. If in either case the total degree increases $(d(a)<d(b)$ or $d(b)<$ $d(c)$), then the total degree increases from a to $c: d(a)<d(c)$.

On the other hand if the total degree for a, b, and c are the same, then we look at the degree in x. Either the degree of x increases or stays the same. Either way is sufficient, and so we find that $a \leqslant c$.

18) All elements of A are comparable under \preccurlyeq.

Indeed this is the case. If their total degree's differ, the smaller one is truly "smaller". If the total degree's are the same we look at the degree in x in which case we find that the smaller degree gives the "smaller" monomial. If, however, the total degree and degree in x are the same, then the monomials are equal, and so again they would be comparable via \preccurlyeq. (But not via <).
$19) \preccurlyeq$ is an equivalence relation.
This is not the case because it is not symmetric.
$20) \preccurlyeq$ is a total ordering.
This is the case because it is reflexive, antisymmetric, transitive, and all elements are comparable.

