Name \qquad Solutions \qquad Transitions, Quiz 4

1) Solve $4 x=3 \bmod 99$.

$$
\begin{gathered}
4^{-1} \cdot 4 x=4^{-1} \cdot 3 \\
x=4^{-1} \cdot 3
\end{gathered}
$$

What is 4^{-1} ? We're looking for a number that gives $1 \bmod 99$.
think
think
ah-ha!
$4 \cdot 25=100=1 \bmod 99$.

Then we get:

$$
x=4^{-1} \cdot 3=25 \cdot 3=75 \bmod 99
$$

Consider the equivalence relation on \mathbb{R}^{2} that identifies points that are the same distance from the origin with each other. For instance, $(5,0),(0,5),(-5,0),(0,-5),(3,4),(4,3),(-3,4)$, among many other points should all be equivalent.

2a) Write down the equivalence relation as a set.
$\left\{((a, b),(c, d)): a^{2}+b^{2}=c^{2}+d^{2}\right\}$

2b) Describe the equivalence relation as an "iff" statement.
$(a, b) R(c, d)$ iff $a^{2}+b^{2}=c^{2}+d^{2}$

2c) Sketch a graph of the equivalence class of $(0,5)$.

3) Consider the following total order relation on $\mathbb{Z}_{>0}$. We're going to split the positive integers into two groups: All even integers come before all odd integers. Within each group, use the standard ordering. For example, if we call this relation "§" then we see that $2 \preccurlyeq 6,3 \preccurlyeq 5$, and $8 \preccurlyeq 7$.

Provide a sketch a proof that " \preccurlyeq " is a total order relation.

Reflexive:
Let x be a positive integer. Then if x is even, $x \leq x$ so $x \preccurlyeq x$. Similarly if x is odd, $x \leq x$ so $x \preccurlyeq x$.

Antisymmetric:
Let x and y be positive integers and assume that $x \leqslant y$ and $y \leqslant x$.
If x and y are both even or both odd, then we have $x \leq y$ and $y \leq x$. The fact that \leq is antisymmetric then tells us that $x=y$.
If, however, x and y are of different parity then something went horribly ary: we could not possibly have had both $x \preccurlyeq y$ and $y \preccurlyeq x$ because the even one must come first!

Transitive:
Let x, y and z be positive integers and assume that $x \preccurlyeq y$ and $y \preccurlyeq z$.
First note that if z is even, then y must also as well. Hence also x is even, so all three are even. In this case the fact that \leq is transitive tells us that $x \leq z$ and so $x \preccurlyeq z$.
If z is not even, we will consider y. If y is even, then x must be as well. Then $x \preccurlyeq z$ because even numbers come first.
If both z and y are odd, then we will consider x. If x is even, $x \leqslant z$ because even numbers come first. If x is odd, then by the transitivty of \leq we get that $x \leq z$ and so $x \preccurlyeq z$.

Total:
Let x and y be positive integers. If x and y are of the same parity, the fact that \leq is total lets us compare them. If x and y are not of the same parity, then one of them is even and that one comes first.

