Codename

\qquad Transitions, Test 1
(Do not put your name on the test; write your name and codename on the code sheet)

1) For the function f, below, show that no two input values give the same output value.

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto 3 x+4
\end{aligned}
$$

2) Let A and B be sets. Show that $A \cap B=A$ implies $A \subseteq B$.
(Do not put your name on the test; write your name and codename on the code sheet)
3) Show that:

$$
\forall_{a \in \mathbb{Z}} \forall_{b \in \mathbb{Q}}((a+b \sqrt{5}) \cdot(a-b \sqrt{5}) \in \mathbb{Q})
$$

Codename \qquad
(Do not put your name on the test; write your name and codename on the code sheet)
4) Translate this sentence into mathematical symbolism.
"There is a real number whose negation is larger than some complex number"
5) Translate this mathematical expression into a sentence.

$$
\forall_{x \in \mathbb{C}^{\exists} \exists_{y \in \mathbb{Z}_{>0}}(|x|<y)}
$$

6) Prove that:

$$
\bigcup_{n=0}^{\infty}\{n,-n\}=\mathbb{Z}
$$

Codename \qquad Transitions, Sheet 4
(Do not put your name on the test; write your name and codename on the code sheet)
7) Let A, B and C be sets such that $A \neq \emptyset$. Assume that $A \times B=A \times C$. Prove that $B=C$.

