Codename \qquad
(Do not put your name on the test; write your name and codename on the code sheet)
Define $\mathbb{Z}_{5}=\{0,1,2,3,4\}$ to be the integers $\bmod 5$.

1) What does it mean for a function $f: \mathbb{Z}_{5} \rightarrow \mathbb{Z}_{5}$ to be one-to-one? (25 points)
2) Prove that the function below is one-to-one. (100 points. Be sure not to skip steps)

$$
\begin{aligned}
f: \mathbb{Z}_{5} & \rightarrow \mathbb{Z}_{5} \\
x & \mapsto 2 x
\end{aligned}
$$

3) What is \mathbb{R}^{2} ? Express it as a set. (10 points)
4) What does it mean for a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ to be onto? (25 points)
5) Prove that the function below is onto. (100 points)

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
& (x, y) \mapsto(x, 2 y)
\end{aligned}
$$

Codename

\qquad Transitions, Sheet 2
(Do not put your name on the test; write your name and codename on the code sheet)
6) Prove the following equality holds true for all $n \in \mathbb{Z}_{\geq 0}$. (100 points)

$$
\sum_{i=0}^{n}(2 i+1)^{2}=\frac{(n+1)(2 n+1)(2 n+3)}{3}
$$

A set S is called well-ordered if every subset of S has a smallest element. That is, every single subset of S has a smallest element.
7) Let S be a well-ordered set. Use the fact that S is well-ordered to construct a partial ordering on S. (50 points)
8) In fact the relation you constructed is a partial order relation. We won't prove all of this though, just part of it. Prove that your relation is antisymmetric (100 points)

Codename \qquad Transitions, Sheet 3
(Do not put your name on the test; write your name and codename on the code sheet)
9) Sketch a graph the function below. (50 points)

$$
\begin{aligned}
f:[-3,6] \cup \mathbb{Z}_{\geq 7} & \rightarrow \mathbb{R} \\
x & \mapsto x^{2}
\end{aligned}
$$

10) What is the domain and range of $f \circ g \circ h$? Some properties of f, g, and h are given below. (50 points) f maps from A onto B, such that the range of g maps to C and the rest of A maps to D.
g maps from E into A.
h maps from F onto E.
11) Complete ONE of the problems below. (100 points)
A) Define relation R on \mathbb{R}^{2} by identifying points that are the same distance from the origin with each other. Prove that R is an equivalence relation.
B) Define a relation S on the set of all monomials in variables x and y via $x^{a} y^{b} S x^{c} y^{d}$ iff $a=c$ and $b \leq d$. Prove that S is a partial order relation.
