Name \qquad Transitions, Quiz 1

Consider the statement "there is an irrational number in which all its positive integer multiples are also irrational."

1) Write this statement in mathematical notation.

$$
\exists_{x \in \mathbb{R}-\mathbb{Q}} \forall_{y \in \mathbb{Z}_{>0}}(x y \in \mathbb{R}-\mathbb{Q})
$$

2) Prove the statement.

Choose $x=\pi$. Note that π is irrational.
Let $y \in \mathbb{Z}_{>0}$.
We will show that $x y=y \pi$ is irrational. Suppose for the purpose of later contradiction that $y \pi$ is rational. Then there are $a, b \in \mathbb{Z}$ such that $y \pi=\frac{a}{b}$.
Rearranging this we obtain $\pi=\frac{a}{y b}$, which says that π is rational. This is a contradiction, so $x y=y \pi$ must be irrational.
Therefore there is an irrational number, π, in which all its positive integer multiples are also irrational. \square

