Name _____

Consider the statement "there is an irrational number in which all its positive integer multiples are also irrational."

1) Write this statement in mathematical notation.

$$\exists_{x \in \mathbb{R} - \mathbb{Q}} \forall_{y \in \mathbb{Z}_{> 0}} (xy \in \mathbb{R} - \mathbb{Q})$$

2) Prove the statement.

Choose $x = \pi$. Note that π is irrational. Let $y \in \mathbb{Z}_{>0}$. We will show that $xy = y\pi$ is irrational. Suppose for the purpose of later contradiction that $y\pi$ is rational. Then there are $a, b \in \mathbb{Z}$ such that $y\pi = \frac{a}{b}$. Rearranging this we obtain $\pi = \frac{a}{yb}$, which says that π is rational. This is a contradiction, so $xy = y\pi$ must be irrational. Therefore there is an irrational number, π , in which all its positive integer multiples are also irrational.