Name _ Solutions \qquad

Define the Harmonic numbers, H_{n}, as the summation from 1 to $\frac{1}{n}$. More specifically:

$$
H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots \frac{1}{n}
$$

Prove that for all $n \in \mathbb{Z}_{\geq 1}$,

$$
\sum_{i=1}^{n} H_{i}=(n+1) H_{n}-n
$$

Want we to prove:

$$
\forall_{n \in \mathbb{Z}}{ }_{\geq 1}\left(\sum_{i=1}^{n} H_{i}=(n+1) H_{n}-n\right)
$$

Base Case:

$$
\sum_{i=1}^{1} H_{i}=H_{1}=1=(1+1) \cdot 1-1=(1+1) H_{1}-1
$$

Induction Hypothesis: Assume for some $k \in \mathbb{Z}_{\geq 1}$:

$$
\sum_{i=1}^{k} H_{i}=(k+1) H_{k}-k
$$

Induction Step:

We need to prove:

$$
\sum_{i=1}^{k+1} H_{i}=((k+1)+1) H_{k+1}-(k+1)
$$

We to this be plugging in the induction hypothesis and simplifying:

$$
\begin{gathered}
\sum_{i=1}^{k+1} H_{i}=\sum_{i=1}^{k} H_{i}+H_{k+1}=(k+1) H_{k}-k+H_{k+1} \\
=(k+1)\left(H_{k+1}-\frac{1}{k+1}\right)-k+H_{k+1} \\
=(k+2)\left(H_{k+1}\right)-\frac{k+1}{k+1}-k \\
=(k+2)\left(H_{k+1}\right)-1-k \\
=(k+2)\left(H_{k+1}\right)-(k+1)
\end{gathered}
$$

\square

