Prove that for all $n \in \mathbb{Z}_{\geq 0}$,
\[
\sum_{i=0}^{n} 2^i = 2^{n+1} - 1
\]

Prove that for all $n \in \mathbb{Z}_{\geq 0}$
\[
\sum_{i=0}^{n} 2^i = 2^{n+1} - 1
\]

BC: Consider $n = 0$:
\[
\sum_{i=0}^{0} 2^i = 2^0 = 1 = 2 - 1 = 2^{0+1} - 1
\]

IH: Assume that for some $k \in \mathbb{Z}_{\geq 0}$:
\[
\sum_{i=0}^{k} 2^i = 2^{k+1} - 1
\]

IS: Here we want prove the "$k + 1$ case":
\[
\sum_{i=0}^{k+1} 2^i = 2^{k+2} - 1
\]

To do this we’ll start with the LHS and break up the summation:
\[
\sum_{i=0}^{k+1} 2^i = \sum_{i=0}^{k} 2^i + 2^{k+1}
\]
\[
= 2^{k+1} - 1 + 2^{k+1}
\]
\[
= 2 \cdot 2^{k+1} - 1
\]
\[
= 2^{k+2} - 1
\]

This proves the inductive step, and so we know that for all $n \in \mathbb{Z}_{\geq 0}$:
\[
\sum_{i=0}^{n} 2^i = 2^{n+1} - 1
\]

\blacksquare