Name \qquad Solutions \qquad

Define a relation R on the integers via:
$a R b$ iff a and b have the same digit in the 10 's place.

1) Give five examples of pairs of numbers that are related.

42R40, $7 R(-3), 24 R 123,2202 R 32407,16 R 112,4 R 4$
2) Give five examples of pairs of numbers that are not related.

42ధR50, $7 \not R(-13), 24 \not R 143,2202 \not R 32417,16 \not R 162,4 \not 214$
3) Prove that R is an equivalence relation.

Reflexive:
Let x be an integer. Then all of the digits of x are the same as the digits of itself, in particulars in the 10's place. Hence R is reflexive.

Symmetric:
Let x and y be integers such that $x R y$. That means that x and y have the same digit in the 10 's place, so clearly y and x do as well. That is, $y R x$.

Transitive:
Let x, y, z be integers such that $x R y$ and $y R z$. This means that x and y have the same digit in the 10 's place, and y and z have the same digit in the 10 's place. Whatever digit that is, it is the digit that is in $y^{\prime} s$ 10's place, so x and z have the same digit in the 10's place. That is, $x R z$.

Because R is reflexive, symmetric, and transitive, it is an equivalence relation.
4) Write down one equivalence class.

$$
\overline{10}=\{x \in \mathbb{Z} \mid x \text { has a } 1 \text { in the } 10 \text { 's digit }\}
$$

5) Write down the collection of all equivalence classes.

$$
\{\overline{0}, \overline{10}, \overline{20}, \overline{30}, \overline{40}, \overline{50}, \overline{67}, \overline{70}, \overline{180}, \overline{90}\}
$$

