Codename

\qquad
(Do not put your name on the test; write your name and codename on the code sheet)

1) Prove that for all $n \in \mathbb{Z}_{\geq 1}$:

$$
\sum_{i=1}^{n} i(i+1)=\frac{n(n+1)(n+2)}{3}
$$

We shall prove this using induction on n.

Base Case: $n=1$

$$
\sum_{i=1}^{1} i(i+1)=1 \cdot(1+1)=2=\frac{2 \cdot 3}{3}=\frac{1(1+1)(1+2)}{3}
$$

Induction Hypothesis: Assume for some $k \in \mathbb{Z}_{\geq 1}$:

$$
\sum_{i=1}^{k} i(i+1)=\frac{k(k+1)(k+2)}{3}
$$

Induction Step:

$$
\begin{gathered}
\sum_{i=1}^{k+1} i(i+1)=\sum_{i=1}^{k} i(i+1)+(k+1)(k+2) \\
=\frac{k(k+1)(k+2)}{3}+(k+1)(k+2) \\
=\frac{k(k+1)(k+2)}{3}+\frac{3(k+1)(k+2)}{3} \\
=\frac{(k+1)(k+2)[k+3]}{3}
\end{gathered}
$$

Therefore by induction we have proven that for all $n \in \mathbb{Z}_{\geq 1}$:

$$
\sum_{i=1}^{n} i(i+1)=\frac{n(n+1)(n+2)}{3}
$$

\square
2) Define a relation R on $(\mathbb{Z}-\{0\}) \times(\mathbb{Z}-\{0\})$ via $(a, b) R(c, d)$ iff the following is true:

$$
a d=b c
$$

a) Give an example of two elements that are related, and another example of two elements that are not related. Ask Dr. Beyerl if they're correct. (This is so that you don't try to make a proof without first getting a feel for the objects you're working with)
$(4,8) R(3,6)$, but $(1,2) \not \subset(2,3)$
b) Prove that R is an equivalence relation.

Reflexive: We need to prove that for all $A \in(\mathbb{Z}-\{0\}) \times(\mathbb{Z}-\{0\}), A R A$.
Let $A \in(\mathbb{Z}-\{0\}) \times(\mathbb{Z}-\{0\})$.
Without loss of generality we can write A as $A=(a, b)$ where $a, b \in \mathbb{Z}-\{0\}$.
Clearly $a b=b a$, so we can conclude that $(a, b) R(a, b)$.
Therefore $A R A$.

Symmetric: We need to prove: if $(a, b) R(c, d)$, then $(c, d) R(a, b)$
Assume that $(a, b) R(c, d)$ where $(a, b),(c, d) \in(\mathbb{Z}-\{0\}) \times(\mathbb{Z}-\{0\})$.
$\therefore a d=b c$
$\therefore b c=a d$
$\therefore c b=d a$
$\therefore(c, d) R(a, b)$

Transitive: We need to prove: if $(a, b) R(c, d)$ and $(c, d) R(e, f)$, then $(a, b) R(e, f)$.
Assume $(a, b) R(c, d)$ and $(c, d) R(e, f)$ where $(a, b),(c, d),(e, f) \in(\mathbb{Z}-\{0\}) \times(\mathbb{Z}-\{0\})$.
Thus $a d=b c$ and $c f=d e$.
Then rearranging both of these to get c and d on the same side of the equation we get:

$$
\frac{a}{b}=\frac{c}{d} \quad \text { and } \quad \frac{c}{d}=\frac{e}{f}
$$

Thus $\frac{a}{b}=\frac{e}{f}$ and so $a f=e b$ which means $(a, b) R(e, f)$.

Therefore R is reflexive, symmetric, and transitive: it is an equivalence relation.
\qquad
(Do not put your name on the test; write your name and codename on the code sheet)
3) Let S be any set. Define a relation on $\mathcal{P}(S)$ via $A R B$ iff $A \cap B \neq \emptyset$.

Prove or disprove each of the following:
a) R is reflexive.
R is not reflexive because $\emptyset \in \mathcal{P}(S)$, so if we take $A=\emptyset, A \cap A=\emptyset$, so $A \not \not R A$.
b) R is symmetric

Suppose that $A R B$, then $A \cap B \neq \emptyset$. Thus $B \cap A \neq \emptyset$ and so $B R A$.
c) R is antisymmetric
R is not necessarily antisymmetric. We shall construct a counterexample.
Let $S=\{1,2,3\}, A=\{1,2\}, B=\{2,3\}$. Then $A R B$, and $B R A$, but $A \neq B$.
d) R is transitive
R is not necessarily transitive. We shall construct a specific counterexample.
Let $S=\{1,2,3,4\}, A=\{1,2\}, B=\{2,3\}, C=\{3,4\}$. Then $A R B$, and $B R C$, but $A \not R C$.
e) R is total
R is not necessarily total. We shall construct a specific counterexample. Let $=\{1,2,3\}, A=\{1,2\}, B=\{3\}$. Then neither $A \not \nmid B$, nor is $B \not / \nmid A$.
4) Show that the function below is one-to-one.

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto 9 x-2
\end{aligned}
$$

Let $x, z \in \mathbb{R}$ and assume that $f(x)=f(z)$.

$$
\begin{aligned}
\therefore 9 x-2 & =9 z-2 \\
\therefore 9 x & =9 z \\
\therefore x & =z
\end{aligned}
$$

Therefore f is one-to-one.
\qquad
(Do not put your name on the test; write your name and codename on the code sheet)
5) Show that the function below is onto.

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto 9 x-2
\end{aligned}
$$

Assume $y \in \mathbb{R}$.
Then choose $x=\frac{y+2}{9}$, and we get:

$$
\begin{aligned}
f(x) & =9\left(\frac{y+2}{9}\right)-2 \\
& =y+2-2 \\
& =y
\end{aligned}
$$

Therefore f is onto.
\square
6) A binomial is a mathematical expression with two terms. In this problem we will work with the variable x and constants. A binomial is an expression of the form:

$$
a x+b
$$

where $a, b \in \mathbb{R}$.
a) Give 5 examples of expressions that are binomials

$$
\begin{gathered}
x+2 \\
3 x-5 \\
14 x+\pi \\
-2.3 x+7 \\
23
\end{gathered}
$$

b) Give 5 examples of expressions that are not binomials

$$
\begin{gathered}
x^{2} \\
\sqrt{x}+2 \\
1 / x \\
14 x+2+x^{-1} \\
i x+2
\end{gathered}
$$

Now define an ordering on binomials via: $a x+b \preccurlyeq c x+d$ iff: one of the conditions are satisfied:

1) $a<c$

OR
b) $a=c$ and $b \leq d$

Show that \preccurlyeq is a linear ordering.

Reflexive:
Let $a x+b$ be an arbitrary binomial. Note that $a=a$ and $b \leq b$ so $a x+b \preccurlyeq a x+b$.

Antisymmetric:

Assume that $a x+b \preccurlyeq c x+d$ and $c x+d \preccurlyeq a x+b$ where $a x+b$ and $c x+d$ are binomials.
Note that we cannot have $a<c$ because then $c x+d \leqslant a x+b$ would not be true. Thus $a=c$ and $b \leq d$.
On the other hand we similarly obtain $c=a$ and $d \leq b$.
Therefore $a=c$ and $b=d$, so $a x+b=c x+d$.

Transitive:
Assume that $a_{1} x+b_{1} \preccurlyeq a_{2} x+b_{2}$ and $a_{2} x+b_{2} \preccurlyeq a_{3} x+b_{3}$ where $a_{i} x+b_{i}$ are binomials.
There are several cases:
Case 1: $a_{1}<a_{2}$ and $a_{2}<a_{3}$.
Case 2: $a_{1}<a_{2}$ and $a_{2}=a_{3}$.
Case 3: $a_{1}=a_{2}$ and $a_{2}<a_{3}$.

In each of cases 1-3, $a_{1}<a_{3}$ so $a_{1} x+b_{1} \leqslant a_{3} x+b_{3}$.

Case 4: $a_{1}=a_{2}$ and $a_{2}=a_{3}$. In this case we know that also $b_{1} \leq b_{2}$ and $b_{2} \leq b_{3}$. Hence $b_{1} \leq b_{3}$ and so we know that $a_{1} x+b_{1} \preccurlyeq a_{3} x+b_{3}$.

Total:
Let $a x+b$ and $c x+d$ be binomials. If $a \neq c$ then either $a<c$ or $c<a$. Each of these gives, respectively, $a x+b \preccurlyeq c x+d$ and $c x+d \preccurlyeq a x+b$.
On the other hand, if $a=c$, then either $b \leq d$ or $d \leq b$ (maybe both). Each of these also gives, respectively, $a x+b \leqslant c x+d$ and $c x+d \leqslant a x+b$.

Hence R is reflexive, antisymmetric, transitive, and total. Therefore R is a linear ordering.

