Assignment 2, due Wednesday February $3^{\text {rd }}$

Section 2.1: 1, 4, 5, 6, 9, 13
Section 2.2: 1, 2, 3, 6, 9

Proof Problem 2:

Rough draft: Friday January $29^{\text {th }}$
Final draft: Friday, February $5^{\text {th }}$
Prove that "If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$ " where A, B, and C are all sets in some universe.

Proof Problem 3:

Rough draft: Wednesday February $10^{\text {th }}$
Final draft: Monday, February $15^{\text {th }}$
Prove that $\forall_{x \in \mathbb{Z}}\left(x \in 2 \mathbb{Z} \Rightarrow x^{2} \in 2 \mathbb{Z}\right)$.

Assignment 3, due Friday February $12{ }^{\text {rd }}$

Section $1.14,7$
Section $1.25,6$
Section 1.3 1, 6, 8, 10
Section 1.4 1, 5

Proof Problem 4:

Rough draft: Wednesday February $17^{\text {th }}$
Final draft: Monday, February $22^{\text {nd }}$
Prove that for all real $x>0, \frac{|2 x-1|}{x+1} \leq 2$.

Assignment 4, due Wednesday $24^{\text {th }}$

Section 1.5: 3, 6
Section 1.6: 1, 2, 4
Section 1.7: 2, 6
Section 3.1: 2, 4

Friday the $\mathbf{2 6}{ }^{\text {th }}$
Test 1

Proof Problem 5:

Rough draft: Monday March $7^{\text {th }}$
Final draft: Friday, March $11^{\text {th }}$
Prove that for all integers $n \geq 1$:

$$
\sum_{m=1}^{n} m^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Assignment 5, due Wednesday March $9^{\text {th }}$

Section 2.4 3, 6 parts a, c, e, g, i, and $I, 7$ parts a, b, d, f, h, i, k, I, and n

Assignment 6, due Wednesday March $16{ }^{\text {th }}$

Section 2.4 4, 6 parts b, f, i, k, 7 parts c, g, i, m, o, 8 parts a, b, c, d, f, g

Proof Problem 6:

Rough draft: Friday March $18{ }^{\text {th }}$
Final draft: Wednesday, March $30^{\text {th }}$
Let S be the set of all bounded functions on $[0,1]$. Give 5 examples of elements of S, so that it's clear you know what S is. Define a relation on S via $f \sim g$ iff

$$
\int_{0}^{1}(f(x)-g(x)) d x=0
$$

Prove that \sim is an equivalence relation.

Proof problem 7

Rough draft: Friday April $15^{\text {th }}$
Final draft: Wednesday, April 20 ${ }^{\text {th }}$
Prove that the function f, defined below, is onto but not one-to-one.

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& (x, y) \mapsto x^{2}+x y
\end{aligned}
$$

Assignment 7, due Monday April $18^{\text {th }}$
Section 4.1: 1, 2, 7, 11, 12
Section 4.2: 1g, 3, 8, 12
Section 4.3: 1hijkl, 4

