Name	Transitions, Quiz 7
1) Define a relation \equiv on \mathbb{Z} via $x\equiv y$ if and only if $6 x-y$. Denote the equivalence class of an element x by \bar{x} . Lastly, define the operation multiplication on these equivalence classes via the equation below. $\bar{x}\cdot\bar{y}\coloneqq \overline{x\cdot y}$ Show that this multiplication operation is well defined.	

2) Using the relation from the previous problem, find $\overline{4}\cdot\overline{5}$ and reduce your answer.