Codename

(Do not put your name on the test; write your name and codename on the code sheet)

1) Show that the function f, defined below, is onto. (100 points)

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto 3 x+9
\end{aligned}
$$

2) Give an example of a real function that is onto but not one-to-one. (25 points)
3) Give an example of a real function that is one-to-one but not onto. (25 points)
4) In a single English sentence, give a conceptual explanation for the term "injective". (25 points)
5) Give a mathematical statement that defines the term "injective". (25 points)

Codename \qquad
(Do not put your name on the test; write your name and codename on the code sheet)
6) Prove or disprove the statement given below: (100 points)
$\exists_{x \in \mathbb{Z}}(x \in 2 \mathbb{Z} \wedge x>11)$
7) Give an example of a number that is rational. (20 points)
8) Give an example of a number that is not rational. (20 points)
9) Give an example of a number in \mathbb{Q}. (20 points)
10) Give an example of a number in $\mathbb{R}-\mathbb{Q}$. (20 points)
11) Give an example of a number in $\mathbb{C}-\mathbb{R}$. (20 points)
12) In a single English sentence, what does the statement below mean: (25 points)

$$
\exists_{\text {person } p} \forall_{\text {kitten } k}(p \text { is friends with } k)
$$

13) Find the negation of the statement below: (25 points)

$$
\forall_{\varepsilon>0} \exists_{N \in \mathbb{Z}} \forall_{n>N}\left(\left|a_{n}-L\right|<\varepsilon\right)
$$

14) Find the following union: (25 points)

$$
\bigcup_{n=3}^{\infty}\left(-n, \frac{1}{n}\right)
$$

15) On the Venn Diagram below, shade in the set corresponding to $(A \cap B) \cap(C-D)$. 25 points

Codename \qquad Transitions, Page 3
(Do not put your name on the test; write your name and codename on the code sheet)

Let P be the statement below.
"There is a positive integer M such that for all integers n greater than M, we know that $\frac{1}{n}<0.26$ "
16) Rewrite P in formal mathematical symbols. (50 points)
17) Prove that P is true. (100 points)
18) Sketch a proof of the fact that that $\sqrt{5}$ is irrational. (100 points)

