\qquad
(Do not put your name on the test; write your name and codename on the code sheet)

1) Show that the function f, defined below, is onto. (100 points)

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto 3 x+9
\end{aligned}
$$

Proof: Let y be arbitrary real number. Choose $x=\frac{y-9}{3}$. Then we get:

$$
f(x)=f\left(\frac{y-9}{3}\right)=3\left(\frac{y-9}{3}\right)+9=y-9+9=y
$$

Therefore f is onto.
2) Give an example of a real function that is onto but not one-to-one. (25 points)

There are many examples here. One such example is:

$$
f(x)=\left\{\begin{array}{c}
x^{2}, x>0 \\
-x^{2}+5, x \leq 0
\end{array}\right.
$$

3) Give an example of a real function that is one-to-one but not onto. (25 points)

$$
f(x)=2^{x}
$$

4) In a single English sentence, give a conceptual explanation for the term "injective". (25 points)

Each output value is attained from only one input value.
5) Give a mathematical statement that defines the term "injective". (25 points)

$$
\forall_{x_{1}, x_{2} \in \mathbb{R}}\left(f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}\right)
$$

Codename \qquad
(Do not put your name on the test; write your name and codename on the code sheet)
6) Prove or disprove the statement given below: (100 points)

$$
\exists_{x \in \mathbb{Z}}(x \in 2 \mathbb{Z} \wedge x>11)
$$

Proof: Choose $x=12$. Then we see that $x \in 2 \mathbb{Z}$ and $x=12>11$.
7) Give an example of a number that is rational. (20 points)

Rational numbers are those that can be written as $\frac{p}{q}$ where $p, q \in \mathbb{Z}$. Examples include:

$$
5, \frac{2}{3}
$$

8) Give an example of a number that is not rational. (20 points)

Examples include anything that cannot be written as in the previous problem, such as:

$$
\pi, e, \sqrt{2}, 7 i, \sqrt{7}+2
$$

9) Give an example of a number in \mathbb{Q}. (20 points)
\mathbb{Q} is the set of rationals, so this is question 7 again. Examples include $5, \frac{2}{3}$, etc.
10) Give an example of a number in $\mathbb{R}-\mathbb{Q}$. (20 points)

Here we need a real number that is not rational. Examples include:

$$
\pi, e, \sqrt{2}, \sqrt{7}+2
$$

11) Give an example of a number in $\mathbb{C}-\mathbb{R}$. (20 points)

Here we need a complex number but not real, such as $7 i$.
12) In a single English sentence, what does the statement below mean: (25 points)

$$
\exists_{\text {person } p} \forall_{\text {kitten } k}(p \text { is friends with } k)
$$

There is a person that is friends with every kitten.
13) Find the negation of the statement below: (25 points)

$$
\begin{aligned}
& \forall_{\varepsilon>0} \exists_{N \in \mathbb{Z}} \forall_{n>N}\left(\left|a_{n}-L\right|<\varepsilon\right) \\
& \sim \forall_{\varepsilon>0} \exists_{N \in \mathbb{Z}} \forall_{n>N}\left(\left|a_{n}-L\right|<\varepsilon\right) \Leftrightarrow \exists_{\varepsilon>0} \forall_{N \in \mathbb{Z}} \exists_{n>N}\left(\sim\left(\left|a_{n}-L\right|<\varepsilon\right)\right) \\
& \Leftrightarrow \exists_{\varepsilon>0} \forall_{N \in \mathbb{Z}} \exists_{n>N}\left(\left|a_{n}-L\right| \geq \varepsilon\right)
\end{aligned}
$$

14) Find the following union: (25 points)

$$
\begin{gathered}
\bigcup_{n=3}^{\infty}\left(-n, \frac{1}{n}\right) \\
\bigcup_{n=3}^{\infty}\left(-n, \frac{1}{n}\right)=\left(-3, \frac{1}{3}\right) \cup\left(-4, \frac{1}{4}\right) \cup\left(-5, \frac{1}{5}\right) \cup \cdots=\left(-\infty, \frac{1}{3}\right)
\end{gathered}
$$

15) On the Venn Diagram below, shade in the set corresponding to $(A \cap B) \cap(C-D)$. $(25$ points)

\qquad
(Do not put your name on the test; write your name and codename on the code sheet)

Let P be the statement below.
"There is a positive integer M such that for all integers n greater than M, we know that $\frac{1}{n}<0.26$ "
16) Rewrite P in formal mathematical symbols. (50 points)

$$
\exists_{M \in \mathbb{Z}_{\geq 1}} \forall_{n>M}^{n \in \mathbb{Z}} \left\lvert\,\left(\frac{1}{n}<0.26\right)\right.
$$

17) Prove that P is true. (100 points)

Choose $M=5$, then for any integer $n>5$ we get:

$$
\frac{1}{n}<\frac{1}{M}=\frac{1}{5}<0.26
$$

Thus $\frac{1}{n}<0.26$.
18) Sketch a proof of the fact that that $\sqrt{5}$ is irrational. (100 points)

We'll do this with a proof by contradiction:
Assume that $\sqrt{5}=\frac{p}{q}$ where $p, q \in \mathbb{Z}$, where p and q are coprime.

$$
\begin{aligned}
& \therefore q \sqrt{5}=p \\
& \therefore 5 q^{2}=p^{2} \\
& \therefore 5 \mid p^{2} \\
& \therefore 5 \mid p \\
& \therefore 25 \mid p^{2} \\
& \therefore 25 \mid 5 q^{2} \\
& \therefore 5 \mid q^{2} \\
& \quad \therefore 5 \mid q
\end{aligned}
$$

This is a contradiction, we cannot have $5 \mid p$ and $5 \mid q$ because then $\operatorname{gcd}(p, q) \neq 1$.

