Codename \qquad Transitions, Test 2
(Do not put your name on the test; write your name and codename on the code sheet)

1) Let $S=\overline{1}$ in the "mod 6 " relation and $T=\overline{1}$ in the "mod 3 " relation. Prove that $S \subseteq T$. (100 points)
2) Find $4 \cdot 5 \bmod 13$. (30 points)
3) Solve $4 x \equiv 7$ mod 11. (40 points)
4) Solve $x^{2} \equiv 1 \bmod 4$. (30 points)
5) Prove that $3 \mid n^{3}+2 n$ for all integers greater than 2 . (100 points)

Codename \qquad Transitions, Page 2
(Do not put your name on the test; write your name and codename on the code sheet)
6) Prove that the relation, given below, which is defined on the integers is transitive. (100 points)

$$
x R y \text { iff } x \mid y
$$

7) Prove that the relation, given below, which is defined on the integers is not transitive. (50 points)

$$
x R y \text { iff } x \mid 2 y
$$

8) Let S be an arbitrary set. Find a partition of S. (25 points)
9) Describe how we can construct an equivalence relation from a partition. (25 points)
10) A weak ordering relation is defined as a relation that is reflexive, antisymmetric, and transitive. Let R be the relation on the integers given by $x R y$ iff $x \equiv_{2} y$ and $x \leq y$. Sketch a proof to show that R is a weak ordering relation. (120 points)

Codename

\qquad Transitions, Page 3
(Do not put your name on the test; write your name and codename on the code sheet)
11) Prove that for all integers $n \geq 5$ that: (100 points)

$$
\prod_{m=1}^{n} \frac{1}{2 m} \leq\left(\frac{1}{2^{n}}\right)^{2}
$$

12) Explain what 3^{-1} means mod 7. (60 points)
13) Find $3^{-1} \bmod 7$. (60 points)
14) Solve $3 x+2=6 \bmod 7$. (60 points)
15) How does the following LaTeX code display? (20 points)

$$
\$ x 1^{\wedge} 2-x^{\wedge} 2 _1=y+\backslash i n t _a^{\wedge} b t
$$

$$
d t \$
$$

