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1) Let 𝑆 = 1̅ in the “mod 6” relation and 𝑇 = 1̅ in the “mod 3” relation. Prove that 𝑆 ⊆ 𝑇.  (100 points) 

 

𝑆 = {… 1, 7, 13, … } = {6𝑘 + 1|𝑘 ∈ ℤ} 

𝑇 = {… 1, 4, 7, 10, 13, … } = {3𝑘 + 1|𝑘 ∈ ℤ} 

 

Proof: Assume 𝑥 ∈ 𝑆. That means we can write 𝑥 = 6𝑘 + 1 for some 𝑘 ∈ ℤ. Thus 𝑥 = 3(2𝑘) + 1 ∈ 𝑇. 

Hence 𝑆 ⊆ 𝑇.  

 

 

2) Find 4 ⋅ 5 mod 13. (30 points) 

 

Method 1: 

4 ⋅ 5 ≡ 20 ≡ 7 mod 13.  

 

Method 2: 

4̅ ⋅ 5̅ = 20̅̅̅̅ = 7̅  

 

 

  



3) Solve 4𝑥 ≡ 7 mod 11. (40 points) 

 

Method 1: (Brute force) 

4 ⋅ 0 ≡ 0 

4 ⋅ 1 ≡ 4 

4 ⋅ 2 ≡ 8 

4 ⋅ 3 ≡ 12 ≡ 1 

4 ⋅ 4 ≡ 16 ≡ 5 

4 ⋅ 5 ≡ 20 ≡ 9 

4 ⋅ 6 ≡ 24 ≡ 2 

4 ⋅ 7 ≡ 28 ≡ 6 

4 ⋅ 8 ≡ 32 ≡ 10 

4 ⋅ 9 ≡ 36 ≡ 3 

4 ⋅ 10 ≡ 40 ≡ 7 

Hence the answer is 𝑥 ≡ 10 mod 11.  

 

Method 2: (Use the Inverse) 

Notice that 4 ⋅ 3 ≡ 12 ≡ 1 mod 11. Hence: 

3 ⋅ 4𝑥 ≡ 3 ⋅ 7 

∴ 𝑥 ≡ 21 ≡ 10 

 

 

 

4) Solve 𝑥2 ≡ 1 mod 4. (30 points) 

 

Because this is a quadratic, and we know nothing about quadratics in mods, all we can do is brute force: 

 

0 ⋅ 0 ≡ 0 

1 ⋅ 1 ≡ 1 

2 ⋅ 2 ≡ 4 ≡ 0 

3 ⋅ 3 ≡ 9 ≡ 1 

 

Hence the answers are 𝑥 ≡ 1 or 𝑥 ≡ 3 mod 4.  

 

 

 

 

  



5) Prove that 3|𝑛3 + 2𝑛 for all integers greater than 2.  (100 points) 

 

 

Base case: 33 + 2 ⋅ 3 = 27 + 6 = 33 = 3 ⋅ 11, hence 3|33 + 2 ⋅ 3. 

 

Induction Hypothesis: Assume 3|𝑘3 + 2𝑘 for some integer 𝑘 > 2. In particular we may write 

𝑘3 + 2𝑘 = 3𝑚 for some 𝑚 ∈ ℤ 

 

Induction Step:  

(𝑘 + 1)3 + 2(𝑘 + 1) = 𝑘3 + 3𝑘2 + 3𝑘 + 1 + 2𝑘 + 2

= (𝑘3 + 2𝑘) + (3𝑘2 + 3𝑘 + 3)

= 3𝑚 + 3(𝑘2 + 𝑘 + 1)

= 3(𝑚 + 𝑘2 + 𝑘 + 1)

 

 

Hence 3|(𝑘 + 1)3 + 2(𝑘 + 1), and therefore by induction, for all integers 𝑛 > 2, 3|𝑛3 + 2𝑛. 
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6) Prove that the relation, given below, which is defined on the integers is transitive. (100 points) 

𝑥𝑅𝑦 iff 𝑥|𝑦 

 

Proof: Assume 𝑥𝑅𝑦 and 𝑦𝑅𝑧 for some integers 𝑥, 𝑦, 𝑧. Thus 𝑥|𝑦 and 𝑦|𝑧, meaning that there are some 

other integers 𝑘1and 𝑘2 such that: 

𝑦 = 𝑥𝑘1 

𝑧 = 𝑦𝑘2 

 

Now plug in 𝑦 = 𝑥𝑘1 into the second equation to get: 

𝑧 = 𝑥𝑘1𝑘2 

 

Thus 𝑥|𝑧, and so the relation is transitive. 

 

 

 

 

 

7) Prove that the relation, given below, which is defined on the integers is not transitive. (50 points) 

𝑥𝑅𝑦 iff 𝑥|2𝑦 

 

Choose 𝑥 = 8, 𝑦 = 4, and 𝑧 = 2. Then we see that 8𝑅4 because 8|2 ⋅ 4 nad 4𝑅2 because 4|2 ⋅ 2. 

However, 8 does not divide 4, so 8 is not related to 2.  

 

 

 

 

8) Let 𝑆 be an arbitrary set. Find a partition of 𝑆. (25 points) 

 

𝒫 = {𝑆} 

 

 

 

9) Describe how we can construct an equivalence relation from a partition. (25 points) 

 

Given a partition, we construct an equivalence relation by specifying that elements in the same part of 

the partition are equivalent.  

  



10) A weak ordering relation is defined as a relation that is reflexive, antisymmetric, and transitive. Let 𝑅 

be the relation on the integers given by 𝑥𝑅𝑦 iff 𝑥 ≡2 𝑦 and 𝑥 ≤ 𝑦.  Sketch a proof to show that 𝑅 is a 

weak ordering relation. (120 points) 

  

Reflexive: Let 𝑥 be some arbitrary integer. Thus 𝑥 ≡2 𝑥 and 𝑥 ≤ 𝑥, so 𝑥𝑅𝑥. Hence 𝑅 is reflexive. 

 

Antisymmetric: Assume 𝑥 and 𝑦 are integers such that 𝑥𝑅𝑦 and 𝑦𝑅𝑥. Thus 𝑥 ≡2 𝑦, 𝑦 ≡2 𝑥, 𝑥 ≤ 𝑦 and 

𝑦 ≤ 𝑥. Looking at those last two, we see that 𝑥 = 𝑦. Hence 𝑅 is antisymmetric. 

 

Transitive: Assume 𝑥, 𝑦 and 𝑧 are integers such that 𝑥𝑅𝑦 and 𝑦𝑅𝑧. This tells us four things: 

𝑥 ≡2 𝑦 

𝑦 ≡2 𝑧 

𝑥 ≤ 𝑦 

𝑦 ≤ 𝑧 

 

By the transitivity of ≡2, we see that 𝑥 ≡2 𝑧. Also because 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 we see that 𝑥 ≤ 𝑧. Hence 𝑅 

is transitive. 

 

Therefore 𝑅 is a weak ordering relation.  
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11) Prove that for all integers 𝑛 ≥ 5 that: (100 points) 

∏
1

2𝑚

𝑛

𝑚=1

≤ (
1

2𝑛
)

2

 

 

Base case:  

∏
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2

 

 

Induction Hypothesis: Assume the following inequality for some integer 𝑘 ≥ 5: 

∏
1
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2

 

 

Induction step: 

∏
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𝑚=1

) ⋅ (
1

2(𝑘 + 1)
)

≤ (
1

2𝑘
)

2

⋅
1

2
⋅

1

𝑘 + 1

≤ (
1

2𝑘
)

2

⋅
1

2
⋅

1

2

= (
1

2𝑘+1
)

2

 

 

Therefore by induction ∏
1

2𝑚
𝑛
𝑚=1 ≤ (

1

2𝑛)
2

 for all integers 𝑛 ≥ 5.  

 

 

 

 

 

 

 

 

 

 

 

 



 

12) Explain what 3−1 means mod 7. (60 points) 

 

This is the multiplicative inverse of 3, That is, the number 𝑥 such that 3𝑥 ≡ 1 mod 7. 

 

 

 

 

 

13) Find 3−1 mod 7. (60 points) 

 

3 ⋅ 5 ≡ 15 ≡ 1 mod 7 so 3−1 = 5.  

 

 

 

 

 

14) Solve 3𝑥 + 2 = 6 mod 7. (60 points) 

 

3𝑥 + 2 ≡ 6 

∴ 3𝑥 ≡ 4 

∴ 𝑥 ≡ 5 ⋅ 4 

∴ 𝑥 ≡ 20 ≡ 6 

 

 

 

15) How does the following LaTeX code display? (20 points) 

$x_1^2-x^2_1=y+\int_a^b t            dt$ 

 

𝑥1
2 − 𝑥1

2 = 𝑦 + ∫ 𝑡𝑑𝑡
𝑏

𝑎

 

 

 

 

 

 

 

 

 

 

 


