Codename _____ Transitions, Test 2

(Do not put your name on the test; write your name and codename on the code sheet)

1) Let $S=\overline{1}$ in the "mod 6" relation and $T=\overline{1}$ in the "mod 3" relation. Prove that $S\subseteq T$. (100 points)

$$S = \{...1, 7, 13, ...\} = \{6k + 1 | k \in \mathbb{Z}\}$$
$$T = \{...1, 4, 7, 10, 13, ...\} = \{3k + 1 | k \in \mathbb{Z}\}$$

Proof: Assume $x \in S$. That means we can write x = 6k + 1 for some $k \in \mathbb{Z}$. Thus $x = 3(2k) + 1 \in T$. Hence $S \subseteq T$.

2) Find $4 \cdot 5 \mod 13$. (30 points)

Method 1:

 $4 \cdot 5 \equiv 20 \equiv 7 \mod 13$.

Method 2:

 $\overline{4} \cdot \overline{5} = \overline{20} = \overline{7}$

3) Solve $4x \equiv 7 \mod 11$. (40 points)

Method 1: (Brute force)

$$4 \cdot 0 \equiv 0$$

$$4 \cdot 1 \equiv 4$$

$$4 \cdot 2 \equiv 8$$

$$4 \cdot 3 \equiv 12 \equiv 1$$

$$4 \cdot 4 \equiv 16 \equiv 5$$

$$4 \cdot 5 \equiv 20 \equiv 9$$

$$4 \cdot 6 \equiv 24 \equiv 2$$

$$4 \cdot 7 \equiv 28 \equiv 6$$

$$4 \cdot 8 \equiv 32 \equiv 10$$

$$4 \cdot 9 \equiv 36 \equiv 3$$

$$4 \cdot 10 \equiv 40 \equiv 7$$

Hence the answer is $x \equiv 10 \mod 11$.

Method 2: (Use the Inverse)

Notice that $4 \cdot 3 \equiv 12 \equiv 1 \mod 11$. Hence:

$$3 \cdot 4x \equiv 3 \cdot 7$$
$$\therefore x \equiv 21 \equiv 10$$

4) Solve $x^2 \equiv 1 \mod 4$. (30 points)

Because this is a quadratic, and we know nothing about quadratics in mods, all we can do is brute force:

$$0 \cdot 0 \equiv 0$$
$$1 \cdot 1 \equiv 1$$
$$2 \cdot 2 \equiv 4 \equiv 0$$
$$3 \cdot 3 \equiv 9 \equiv 1$$

Hence the answers are $x \equiv 1$ or $x \equiv 3 \mod 4$.

5) Prove that $3|n^3 + 2n$ for all integers greater than 2. (100 points)

Base case: $3^3 + 2 \cdot 3 = 27 + 6 = 33 = 3 \cdot 11$, hence $3|3^3 + 2 \cdot 3$.

Induction Hypothesis: Assume $3|k^3+2k$ for some integer k>2. In particular we may write $k^3+2k=3m$ for some $m\in\mathbb{Z}$

Induction Step:

$$(k+1)^3 + 2(k+1) = k^3 + 3k^2 + 3k + 1 + 2k + 2$$
$$= (k^3 + 2k) + (3k^2 + 3k + 3)$$
$$= 3m + 3(k^2 + k + 1)$$
$$= 3(m + k^2 + k + 1)$$

Hence $3|(k+1)^3 + 2(k+1)$, and therefore by induction, for all integers n > 2, $3|n^3 + 2n$.

_	_	_1	_	 _	m	-

Transitions, Page 2

(Do not put your name on the test; write your name and codename on the code sheet)

6) Prove that the relation, given below, which is defined on the integers is transitive. (100 points) xRy iff x|y

Proof: Assume xRy and yRz for some integers x, y, z. Thus x|y and y|z, meaning that there are some other integers k_1 and k_2 such that:

$$y = xk_1$$
$$z = yk_2$$

Now plug in $y = xk_1$ into the second equation to get:

$$z = xk_1k_2$$

Thus x|z, and so the relation is transitive.

7) Prove that the relation, given below, which is defined on the integers is not transitive. (50 points) xRy iff x|2y

Choose x=8,y=4, and z=2. Then we see that 8R4 because $8|2\cdot 4$ nad 4R2 because $4|2\cdot 2$. However, 8 does not divide 4, so 8 is not related to 2.

8) Let S be an arbitrary set. Find a partition of S. (25 points)

$$\mathcal{P} = \{S\}$$

9) Describe how we can construct an equivalence relation from a partition. (25 points)

Given a partition, we construct an equivalence relation by specifying that elements in the same part of the partition are equivalent.

10) A <u>weak ordering relation</u> is defined as a relation that is reflexive, antisymmetric, and transitive. Let R be the relation on the integers given by xRy iff $x \equiv_2 y$ and $x \leq y$. Sketch a proof to show that R is a weak ordering relation. (120 points)

Reflexive: Let x be some arbitrary integer. Thus $x \equiv_2 x$ and $x \leq x$, so xRx. Hence R is reflexive.

Antisymmetric: Assume x and y are integers such that xRy and yRx. Thus $x \equiv_2 y$, $y \equiv_2 x$, $x \leq y$ and $y \leq x$. Looking at those last two, we see that x = y. Hence R is antisymmetric.

Transitive: Assume x, y and z are integers such that xRy and yRz. This tells us four things:

$$x \equiv_2 y$$
$$y \equiv_2 z$$
$$x \le y$$
$$y \le z$$

By the transitivity of \equiv_2 , we see that $x\equiv_2 z$. Also because $x\leq y$ and $y\leq z$ we see that $x\leq z$. Hence R is transitive.

Therefore R is a weak ordering relation.

(Do not put your name on the test; write your name and codename on the code sheet)

11) Prove that for all integers $n \ge 5$ that: (100 points)

$$\prod_{m=1}^{n} \frac{1}{2m} \le \left(\frac{1}{2^n}\right)^2$$

Base case:

$$\prod_{m=1}^{5} \frac{1}{2m} = \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{6} \cdot \frac{1}{8} \cdot \frac{1}{10} \le \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{8} \cdot \frac{1}{4} = \left(\frac{1}{2^5}\right)^2$$

Induction Hypothesis: Assume the following inequality for some integer $k \ge 5$:

$$\prod_{m=1}^{k} \frac{1}{2m} \le \left(\frac{1}{2^k}\right)^2$$

Induction step:

$$\prod_{m=1}^{k+1} \frac{1}{2m} = \left(\prod_{m=1}^{k} \frac{1}{2m}\right) \cdot \left(\frac{1}{2(k+1)}\right)$$

$$\leq \left(\frac{1}{2^{k}}\right)^{2} \cdot \frac{1}{2} \cdot \frac{1}{k+1}$$

$$\leq \left(\frac{1}{2^{k}}\right)^{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \left(\frac{1}{2^{k+1}}\right)^{2}$$

Therefore by induction $\prod_{m=1}^{n} \frac{1}{2m} \le \left(\frac{1}{2^n}\right)^2$ for all integers $n \ge 5$.

12) Explain what 3^{-1} means mod 7. (60 points)

This is the multiplicative inverse of 3, That is, the number x such that $3x \equiv 1 \mod 7$.

13) Find
$$3^{-1}$$
 mod 7. (60 points)

$$3 \cdot 5 \equiv 15 \equiv 1 \mod 7 \text{ so } 3^{-1} = 5.$$

14) Solve $3x + 2 = 6 \mod 7$. (60 points)

$$3x + 2 \equiv 6$$

$$\therefore 3x \equiv 4$$

$$\therefore x \equiv 5 \cdot 4$$

$$\therefore x \equiv 20 \equiv 6$$

15) How does the following LaTeX code display? (20 points)

$$x_1^2-x^2_1=y+\int_a^b t$$
 dt\$

$$x_1^2 - x_1^2 = y + \int_a^b t dt$$