Part 1: Definitions and Concepts

1) Construct a truth table for $(P \lor Q) \Rightarrow Q$ (50 points)

P	Q	$P \lor Q$	$(\boldsymbol{P} \lor \boldsymbol{Q}) \Rightarrow \boldsymbol{Q}$
Т	Т	Т	Т
Т	F	Т	F
F	Т	Т	Т
F	F	F	Т

2) For the statement below, (a) Identify the individual statements and (b) Identify the statement form "If x and y are both positive, then x + y is positive."

(50 points)

P: "x is positive" Q: "y is positive" R: "x + y is positive"

 $(P \land Q) \Rightarrow R$

3) Give the definition of <u>divides</u>. Be mathematically precise and use the variables x and y to define what it means to say "x|y". Vague answers will be given no credit. (50 points)

x|y means that there is some $k \in \mathbb{Z}$ such that y = kx

4) Give the definition of <u>even</u>. Be mathematically precise, vague answers will be given no credit. (50 points)

An integer *n* being even means that 2|n.

Or if you want to write out the definition of divides too:

An integer *n* being even means that there is some $k \in \mathbb{Z}$ such that n = 2k.

5) Find the negation of the statement below.

(50 points)

$$\forall_{x \in \mathbb{R}} \exists_{y \in \mathbb{R}} (2x + 3y = 7)$$

$$\sim \forall_{x \in \mathbb{R}} \exists_{y \in \mathbb{R}} (2x + 3y = 7) \Leftrightarrow \exists_{x \in \mathbb{R}} \forall_{y \in \mathbb{R}} (2x + 3y \neq 7)$$

6) Determine the truth value of the statements below. (10 points each)

• $\forall_{x \in \mathbb{R}} (x \neq 0)$

False, because if x = 0, then 0 = 0.

• $\exists_{x \in \mathbb{R}} (x \neq 0)$

True, because you could choose x = 5.

• $\forall_{x \in \mathbb{R}} \forall_{y \in \mathbb{R}} (xy = 0)$

False, because if x = 2 and y = 3 then $6 \neq 0$.

• $\forall_{x \in \mathbb{R}} \exists_{y \in \mathbb{R}} (x^2 + xy = 0)$

True. Whatever x is, choose y = -x

• $\exists_{x \in \mathbb{R}} \forall_{y \in \mathbb{R}} (x^2 + xy = 0)$

True, choose x = 0.

Part 2: Proofs

7) Below is a partial proof of the statement below. Finish the proof.

"If x > 2, then 2x + 5 > 4"

(100 points)

Line	Statement	Reasoning
(1)	<i>x</i> > 2	Premise
(2)	2x > 4	Multiply line 1 by 2

(3) 2x + 5 > 2x Algebra on line 2 (_____) Shoot.... This is just an arithmetic fact (The left side is 5 larger than the right) and has nothing to do with line 2. This line won't be graded.

(4) 2x + 5 > 4 Transitive property of "<" applied to lines 2 and 3.

8) Construct a formal proof to show that the statement below is valid.

$$\left((P \land Q) \land \left(P \Rightarrow (Q \lor R) \right) \land \sim Q \right) \Rightarrow R$$

(100 points)

Line	Statement	Reasoning
(1)	$P \wedge Q$	Premise
(2)	Р	Simplification (T16) applied to line 1.
(3)	$P \Rightarrow (Q \lor R)$	Premise
(4)	$Q \lor R$	Modus Ponens applied to lines 2 and 3.
(5)	$\sim Q$	Premise
(6)	R	Disjunctive Syllogism (T20) applied to lines 4 and 5.

9) Prove the statement below.

$$\exists_{x \in \mathbb{R}} \exists_{y \in \mathbb{R}} (x + y = 7)$$

(100 points)

Choose x = 2 and y = 5. Then we have x + y = 2 + 5 = 7.