\qquad

Part 1: Definitions and Concepts

1) Construct a truth table for $(P \vee Q) \Rightarrow Q$
(50 points)

\boldsymbol{P}	\boldsymbol{Q}	$\boldsymbol{P} \vee \boldsymbol{Q}$	$(\boldsymbol{P} \vee \boldsymbol{Q}) \Rightarrow \boldsymbol{Q}$
T	T	T	T
T	F	T	F
F	T	T	T
F	F	F	T

2) For the statement below, (a) Identify the individual statements and (b) Identify the statement form "If x and y are both positive, then $x+y$ is positive."
(50 points)
P : " x is positive"
Q : " y is positive"
$R:$ " $x+y$ is positive"
$(P \wedge Q) \Rightarrow R$
3) Give the definition of divides. Be mathematically precise and use the variables x and y to define what it means to say " $x \mid y$ ". Vague answers will be given no credit.
(50 points)
$x \mid y$ means that there is some $k \in \mathbb{Z}$ such that $y=k x$
4) Give the definition of even. Be mathematically precise, vague answers will be given no credit. (50 points)

An integer n being even means that $2 \mid n$.

Or if you want to write out the definition of divides too:

An integer n being even means that there is some $k \in \mathbb{Z}$ such that $n=2 k$.
5) Find the negation of the statement below.
(50 points)

$$
\forall_{x \in \mathbb{R}} \exists_{y \in \mathbb{R}}(2 x+3 y=7)
$$

$$
\sim \forall_{x \in \mathbb{R}} \exists_{y \in \mathbb{R}}(2 x+3 y=7) \Leftrightarrow \exists_{x \in \mathbb{R}} \forall_{y \in \mathbb{R}}(2 x+3 y \neq 7)
$$

6) Determine the truth value of the statements below. (10 points each)

- $\forall_{x \in \mathbb{R}}(x \neq 0)$

False, because if $x=0$, then $0=0$.

- $\exists_{x \in \mathbb{R}}(x \neq 0)$

True, because you could choose $x=5$.

- $\forall_{x \in \mathbb{R}} \forall_{y \in \mathbb{R}}(x y=0)$

False, because if $x=2$ and $y=3$ then $6 \neq 0$.

- $\forall_{x \in \mathbb{R}} \exists_{y \in \mathbb{R}}\left(x^{2}+x y=0\right)$

True. Whatever x is, choose $y=-x$

- $\exists_{x \in \mathbb{R}} \forall_{y \in \mathbb{R}}\left(x^{2}+x y=0\right)$

True, choose $x=0$.

Part 2: Proofs

7) Below is a partial proof of the statement below. Finish the proof.

$$
\text { "If } x>2 \text {, then } 2 x+5>4 \text { " }
$$

(100 points)

Line Statement Reasoning
(1) $\quad x>2$

Premise
(2) $2 x>4$

Multiply line 1 by 2
(3) $2 x+5>2 x$

Algebra on line 2 (
Shoot.... This is just an arithmetic fact (The left side is 5 larger than the right) and has nothing to do with line 2. This line won't be graded.
(4) $\quad \underline{2 x+5>4} \quad$ Transitive property of " $<$ " applied to lines 2 and 3.
8) Construct a formal proof to show that the statement below is valid.

$$
((P \wedge Q) \wedge(P \Rightarrow(Q \vee R)) \wedge \sim Q) \Rightarrow R
$$

(100 points)

Line	Statement	Reasoning
(1)	$P \wedge Q$	Premise
(2)	P	Simplification (T16) applied to line 1.
(3)	$P \Rightarrow(Q \vee R)$	Premise
(4)	$Q \vee R$	Modus Ponens applied to lines 2 and 3.
(5)	$\sim Q$	Premise
(6)	R	Disjunctive Syllogism (T20) applied to lines 4 and 5.

9) Prove the statement below.

$$
\exists_{x \in \mathbb{R}} \exists_{y \in \mathbb{R}}(x+y=7)
$$

(100 points)
Choose $x=2$ and $y=5$. Then we have $x+y=2+5=7$.

