Part 1: Definitions and Concepts

1) Answer true or false for each of the statements below. (6. $\bar{6}$ point each)

T oF (I)	$\{3\} \in \{3\}$
Tor F (II)	$\{3\} \subseteq \{3\}$
T oF (III)	$\{3\} \subset \{3\}$
Tor F (IV)	$\{3\} \in \big\{\{3\}\big\}$
T 0 (V)	$\{3\} \subseteq \big\{\{3\}\big\}$
T oF (VI)	$\{3\} \subset \big\{\{3\}\big\}$
T oF (VII)	$\{3\} \in \{3,4\}$
Tor F (VIII)	$\{3\} \subseteq \{3,4\}$
Tor F (IX)	$\{3\} \subset \{3,4\}$
Tor F (X)	$\{3\} = \{3\}$
T oF (XI)	$\{3\} = \{\{3\}\}$

For the next couple questions, define $S = \{3\}$.

Tor F (XII)	$\exists_{x \in S} (x = 3)$
Tr F (XIII)	$\forall_{x\in S}(x=3)$
T oF (XIV)	$\exists_{x\in S}(x=\{3\})$
T oF (XV)	$\forall_{x\in S}(x=\{3\})$

2) Give the definition of <u>mutually exclusive</u>. Be mathematically precise, vague answers will be given no credit. (50 points)

Let A and B be sets. They are mutually exclusive if they have no overlap: $A \cap B = \emptyset$.

3) Shade in the region $A \cap (B \cup C)$ on the Venn Diagram below. (50 points)

4) Find {2,3,4,5} ∩ {4,5,6,7} (25 points)

{4,5}

5) Find {2,3,4,5} - {4,5,6,7} (25 points)

{2,3}

6) Find [2,5] ∩ [4,7] (25 points)

[4,5]

7) Find [2,5] - [4,7] (25 points)

[2,4)

Part 2: Proofs

8) Below is a partial proof of the statement below. Finish the proof.

 $(A \cup B = B) \Rightarrow A \subseteq B$

(100 points)

Line	Statement	Reasoning
(1)	$A \cup B = B$	Premise
(2)	Assume $x \in A$	
(3)	$x \in A \cup B$	This is because $A \subseteq A \cup B$ and line 2: $x \in A$.
(4)	$x \in B$	Combine lines 1 and 3.
(3)	$A \subseteq B$	The implication formed from lines 2-4.

9) Let A be a set. Prove that $\emptyset \times A = \emptyset$ (100 points)

Assume $\emptyset \times A$ is nonempty. Then there is some $z \in \emptyset \times A$. From the definition of cross product, we know z = (x, y) for some $x \in \emptyset$ and $y \in A$. However, $x \notin \emptyset$. This is a contradiction, and so we know $\emptyset \times A = \emptyset$.

10) Assuming up to theorem T67 only, prove theorem T68. It states that:

 $(A \subseteq B \cap C \subseteq D) \Rightarrow (A \cap C \subseteq B \cap D)$

(100 points)

Assume the premises $A \subseteq B$ and $C \subseteq D$. Suppose $x \in A \cap C$. Then because $x \in A$ and $A \subseteq B$, we know $x \in B$. Also because $x \in C$ and $C \subseteq D$, we know $x \in D$. Therefore $x \in B \cap D$. We thus have proven that $A \cap C \subseteq B \cap D$.

Note the typo. The theorem should say " $(A \subseteq B \land C \subseteq D) \Rightarrow (A \cap C \subseteq B \cap D)$ ", not what it actually says above with an intersection symbol. The proof above is for the actual theorem. Hence this question was thrown out and counted as bonus.