\qquad

Part 1: Definitions and Concepts

1) Answer true or false for each of the statements below. ($6 . \overline{6}$ point each)

$$
\begin{array}{ll}
\text { ToF (I) } & \{3\} \in\{3\} \\
\text { Tor F (II) } & \{3\} \subseteq\{3\} \\
\text { ToF (III) } & \{3\} \subset\{3\} \\
\text { Tor F (IV) } & \{3\} \in\{\{3\}\} \\
\text { To.F (V) } & \{3\} \subseteq\{\{3\}\} \\
\text { Tof (VI) } & \{3\} \subset\{\{3\}\} \\
\text { Tof (VII) } & \{3\} \in\{3,4\} \\
\text { Tor F (VIII) } & \{3\} \subseteq\{3,4\} \\
\text { Tor F (IX) } & \{3\} \subset\{3,4\} \\
\text { Tor F (X) } & \{3\}=\{3\} \\
\text { T of (XI) } & \{3\}=\{\{3\}\}
\end{array}
$$

For the next couple questions, define $S=\{3\}$.

$$
\begin{array}{ll}
\text { (T) } \operatorname{tr} \text { F (XII) } & \exists_{x \in S}(x=3) \\
\text { Tor F (XIII) } & \forall_{x \in S}(x=3) \\
\text { T oF }(\mathrm{XIV}) & \exists_{x \in S}(x=\{3\}) \\
\text { T of }(\mathrm{XV}) & \forall_{x \in S}(x=\{3\})
\end{array}
$$

2) Give the definition of mutually exclusive. Be mathematically precise, vague answers will be given no credit. (50 points)

Let A and B be sets. They are mutually exclusive if they have no overlap: $A \cap B=\emptyset$.
3) Shade in the region $A \cap(B \cup C)$ on the Venn Diagram below.
(50 points)

4) Find $\{2,3,4,5\} \cap\{4,5,6,7\}$
(25 points)
5) Find $\{2,3,4,5\}-\{4,5,6,7\}$
(25 points)
6) Find $[2,5] \cap[4,7]$
(25 points)
7) Find $[2,5]$ - $[4,7]$
(25 points)

Part 2: Proofs

8) Below is a partial proof of the statement below. Finish the proof.

$$
(A \cup B=B) \Rightarrow A \subseteq B
$$

(100 points)

Line Statement Reasoning
(1) $\quad A \cup B=B \quad$ Premise
(2) Assume $x \in A$
(3) $\quad x \in A \cup B \quad$ This is because $A \subseteq A \cup B$ and line 2: $x \in A$.
(4) $x \in B \quad$ Combine lines 1 and 3.
(3) $A \subseteq B \quad$ The implication formed from lines 2-4.
9) Let A be a set. Prove that $\emptyset \times A=\varnothing$
(100 points)

Assume $\emptyset \times A$ is nonempty. Then there is some $z \in \emptyset \times A$. From the definition of cross product, we know $z=(x, y)$ for some $x \in \emptyset$ and $y \in A$. However, $x \notin \emptyset$. This is a contradiction, and so we know $\emptyset \times A=\emptyset$.
10) Assuming up to theorem T67 only, prove theorem T68. It states that:
$(A \subseteq B \cap C \subseteq D) \Rightarrow(A \cap C \subseteq B \cap D)$
(100 points)

Assume the premises $A \subseteq B$ and $C \subseteq D$. Suppose $x \in A \cap C$. Then because $x \in A$ and $A \subseteq B$, we know $x \in B$. Also because $x \in C$ and $C \subseteq D$, we know $x \in D$. Therefore $x \in B \cap D$. We thus have proven that $A \cap C \subseteq B \cap D$.

Note the typo. The theorem should say " $(A \subseteq B \wedge C \subseteq D) \Rightarrow(A \cap C \subseteq B \cap D)$ ", not what it actually says above with an intersection symbol. The proof above is for the actual theorem. Hence this question was thrown out and counted as bonus.

