Name \qquad Test 3, Fall 2019

Part 1: Definitions and Concepts

1) Answer true or false for each of the statements below. (10 point each)

T or F (I) A relation is always a function
T or F (II) A function is always a relation
T or F (III) Whenever we have a union of infinitely many sets, the answer is the universe.
T or F (IV) Whenever we have a union of no sets, the answer is the empty set.
T or $\mathrm{F}(\mathrm{V}) \quad$ When working mod 15 , every integer can be reduced to a number in the range 0 through 14.
2) Give the definition of a relation R from a set A to a set B. Be mathematically precise, vague answers will be given no credit. (50 points)
3) Formally define the modular arithmetic relation by filing in the box below. (50 points)

$$
x \equiv y \bmod n \text { if and only if }
$$

4) Given the function below, find $f(3,4)$.

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& (x, y) \mapsto x^{2} y
\end{aligned}
$$

5) Find all square roots of 1 in the mod 8 universe. (50 points)
6) Reduce 225 mod 13. (25 points)
7) Solve $x+20=15 \bmod 13(25$ points $)$

Part 2: Proofs

8) Below is a partial proof of the statement below. Finish the proof.

$$
\forall_{j \in I}\left(A_{j} \subseteq \bigcup_{i \in I} A_{i}\right)
$$

(100 points)

Line
Statement
(1) Let $j \in I$ be an arbitrary index. N / A - it's the definition of j.
(2) Assume $x \in A_{j}$
(3) \qquad
(4) $\quad A_{j} \subseteq \bigcup_{i \in I} A_{i}$
(3) $\quad \forall_{j \in I}\left(A_{j} \subseteq \bigcup_{i \in I} A_{i}\right)$
N / A - It's an assumption.

Use the definition of union and the fact that $j \in I$.

Universal generalization on line (4) based on the fact that j was arbitrary.
9) Let R be the relation on \mathbb{R} defined by $x R y$ iff $x^{2}+y^{2}=0$.

Prove that R is not reflexive.
(50 points)

Prove that R is symmetric.
(50 points)
10) Prove the inequality below for all integers $n \geq 3$, using induction.

$$
n^{2}-7 n+12 \geq 0
$$

(100 points)

