\qquad

1) Let U be the universe of all quadrilaterals, $P(x)$ be the open statement " x is a square" and $Q(x)$ be the open statement " x is a rectangle". Rephrase the statement below into a sentence that makes the logic more clear. Then Write the mathematical symbolism that represents it.
"All squares are rectangles"

For every quadrilateral x, if it is a square then it is also a rectangle.

$$
\forall_{x \in U}(P(x) \Rightarrow Q(x))
$$

2) Find the negation of the statement below.

$$
\begin{gathered}
\exists_{x \in U}(Q(x) \wedge \sim P(x)) \\
\sim \exists_{x \in U}(Q(x) \wedge \sim P(x)) \Leftrightarrow \forall_{x \in U}(\sim(Q(x) \wedge \sim(P(x)))) \Leftrightarrow \forall_{x \in U}(\sim Q(x) \vee P(x))
\end{gathered}
$$

3) Let x be an integer. Prove that if x is a multiple of 4 , then x is even.

Assume x is a multiple of 4 . This means that $x=4 k$ for some $k \in \mathbb{Z}$. If we rewrite this we obtain $x=$ $2(2 k)$ which shows that x is even.

OR
Claims Reasoning
x is a multiple of $4 \quad$ Premise
$x=4 k$ for some $k \in \mathbb{Z}$
Definition of multiple of 4.
$x=2(2 k)$
Algebra
Definition of l
Plug in the value of l to the equation above
Definition of even

