Name \qquad

Part 1: Definitions and Concepts

1) Write down the truth table for $P \Rightarrow Q$
(30 points)
2) Rephrase the statement "The car will not run without gasoline in the tank" into an "if...then..." statement.
(30 points)
3) What is the definition of absolute value? Be mathematically precise by using an equation, something vague such as "the positive value of a number" will be given no credit.
(30 points)
4) Find the negation of the statement below.

$$
\forall_{x \in A} \exists y \in B(x+y>5)
$$

(30 points)
5) State the definition of an even number. Be mathematically precise, something vague such as "divisible by 2 " will be given no credit.
(30 points)
6) State the definition of a rational number. Be mathematically precise, something vague such as "numbers that are fractions" will be given no credit.
(30 points)

True or False: circle the correct answer.
(10 points each)
Tor F 7) The phrase "What time is dinner?" is a statement.
Tor F 8) The phrase " $2 \cdot(3+4)$ " is a statement.
Tor F 9) $(P \wedge(P \Rightarrow Q)) \Rightarrow Q$ is a tautology
Tor F 10) $\forall_{x \in \mathbb{R}}(2 x+3=7)$
T or F 11) $\exists_{x \in \mathbb{R}} \forall_{y \in \mathbb{R}}(x y=0)$

Part 2: Proofs

12) Below is a partial proof of the statement below. Finish the proof.

$$
(((P \wedge Q) \Rightarrow R) \wedge(P \Rightarrow Q) \wedge P) \Rightarrow R
$$

(100 points)
Line Statements Reasoning
(1) $\quad P \Rightarrow Q$
(2) P
(3) $\quad Q$

Modus Ponens applied to lines 1 and 2.
(4)
(5)
(6)

Premise

Premise
\qquad
\qquad
\qquad
13) Prove the statement below. For clarity, the statement is written twice using different symbols.

$$
\text { For all real numbers } x \text {, if } x>2 \text {, then } 2 x>4
$$

(100 points)
$\forall_{x \in \mathbb{R}}(x>2 \Rightarrow 2 x>4)$
14) Prove the statement below.

$$
\forall_{x \in \mathbb{R}} \exists_{y \in \mathbb{R}}(x<y)
$$

(100 points)
15) Let a, b, and c be integers. Prove the statement below. For clarity, the statement is written twice using different symbols.

If a divides $b-1$ and a divides $c-1$, then a divides $b c-1$.

$$
\text { If } a \mid b-1 \text { and } a \mid c-1, \text { then } a \mid b c-1
$$

(100 points)

