Name \qquad

Part 1: True or False. Circle the correct answer.
(10 points each)
Tor F 1) $1 \in\{1,2\}$ True
Tor F 2) $\{1\} \in\{1,2\}$ False
Tor F 3) $1 \subseteq\{1,2\}$ False
Tor F 4) $\{1\} \subseteq\{1,2\}$ True
Tor F 5) $1 \in\{1,2\} \times\{1,2\}$ False
Tor F 6) $\{1\} \in\{1,2\} \times\{1,2\}$ False

Part 2: Definitions and Concepts

For these problems let $A=\{1,2,3,4\}, B=\{3,4,5\}, C=[3,5]$ and $D=(4, \infty)$
(20 points each)
7) Find $A \cap B$.
$\{3,4\}$
8) Find $A \cup B$
$\{1,2,3,4,5\}$
9) Find $C \cap D$
$(4,5]$
10) Find $C \cup D$
$[3, \infty)$

For these problems let $A=\{1,2,3,4\}, B=\{3,4,5\}, C=[3,5]$ and $D=(4, \infty)$
(20 points each)
11) Find $D-A$
$(4, \infty)$
12) Find $B-A$
\{5\}
13) Draw a picture illustrating $A \times C$.
14) Draw a picture illustrating $A \times B$.

Part 3: Proofs

15) Below is a partial proof of the statement below. Finish the proof.

$$
(A \cap B=A) \Rightarrow(A \subseteq B)
$$

(100 points)

Line Statements Reasoning
(1) $\quad A \cap B=A$

Premise
(2) Assume $x \in A$
(3) $\quad x \in A \cap B$

Because $A=A \cap B$ and $x \in A$
(4) $\quad x \in B$

Because $x \in A \cap B$ means $x \in A$ and $x \in B$ \qquad
(5) $\quad A \subseteq B$

The implication formed from lines 2-4.
16) Prove the statement below.

$$
\exists_{x \in \mathbb{R}} \forall_{y \in \mathbb{R}}(x y=0)
$$

(100 points)

Choose $x=0$. Let $y \in \mathbb{R}$ be an arbitrary real number. Therefore $x y=0 \cdot y=0$.
17) Prove the statement below without referencing theorem T65.

$$
\text { If } A \subseteq B \text { and } B \subseteq C \text {, then } A \subseteq C
$$

(100 points)

Assume $x \in A$. Then because $A \subseteq B, x \in B$. Continuing, because $B \subseteq C$ we see that $x \in C$. Therefore $A \subseteq C$.
18) Prove the statement below.

$$
(A-B) \cap B=\emptyset
$$

(100 points)

Suppose $x \in(A-B) \cap B$. Then in particular $x \in A-B$ and $x \in B$. The first one of these tells us that $x \in A$ but $x \notin B$. We now have $x \in B$ and $x \notin B$ which is a contradiction. Therefore our assumption that such an $x \in(A-B) \cap B$ exists is false. Therefore $(A-B) \cap B=\emptyset$.

