10) Find $C \cup D$

[3,∞)

For these problems let $A=\{1,2,3,4\}, B=\{3,4,5\}, C=[3,5]$ and $D=(4,\infty)$ (20 points each)

11) Find D-A

(4,∞)

12) Find B-A

{5}

13) Draw a picture illustrating $A \times C$.

14) Draw a picture illustrating $A \times B$.

Part 3: Proofs

15) Below is a partial proof of the statement below. Finish the proof.

$$(A \cap B = A) \Rightarrow (A \subseteq B)$$

(100 points)

Line Statements Reasoning

- (1) $A \cap B = A$ Premise
- (2) Assume $x \in A$
- (3) $x \in A \cap B$ Because $A = A \cap B$ and $x \in A$
- (4) $x \in B$ Because $x \in A \cap B$ means $x \in A$ and $x \in B$
- (5) $A \subseteq B$ The implication formed from lines 2-4.

16) Prove the statement below.

$$\exists_{x \in \mathbb{R}} \forall_{y \in \mathbb{R}} (xy = 0)$$

(100 points)

Choose x=0. Let $y\in\mathbb{R}$ be an arbitrary real number. Therefore $xy=0\cdot y=0$.

17) Prove the statement below without referencing theorem T65.

If
$$A \subseteq B$$
 and $B \subseteq C$, then $A \subseteq C$

(100 points)

Assume $x \in A$. Then because $A \subseteq B$, $x \in B$. Continuing, because $B \subseteq C$ we see that $x \in C$. Therefore $A \subseteq C$.

18) Prove the statement below.

$$(A-B)\cap B=\emptyset$$

(100 points)

Suppose $x \in (A-B) \cap B$. Then in particular $x \in A-B$ and $x \in B$. The first one of these tells us that $x \in A$ but $x \notin B$. We now have $x \in B$ and $x \notin B$ which is a contradiction. Therefore our assumption that such an $x \in (A-B) \cap B$ exists is false. Therefore $(A-B) \cap B = \emptyset$.