Name \qquad

Part 1: True or False. Circle the correct answer.
(10 points each)
Let R be the relation on \mathbb{Z} given by $x R y$ iff $(x+y)^{2}=x^{2}+y^{2}$
Tor F1) R is reflexive.
T or F 2) R is symmetric.
Tor F 3) R is antisymmetric.
Tor F 4) R is transitive.
T or F 5) R is an equivalence relation.
T or F 6) R is a partial order relation.

Let S be the relation on the set of real polynomials with variable x given by $f S g$ iff $f(0) \geq g(0)$
T or F 7) S is reflexive.
T or F 8) S is symmetric.
Tor F 9) S is antisymmetric.
T or F 10) S is transitive.
T or F 11) S is an equivalence relation.
T or F 12) S is a partial order relation.

Let A be a set and R a relation on A.
T or F 13) If R is an equivalence relation, it creates a partition of A.
Tor F14) If R is an partial order relation, it generalizes the idea of inequality, " $<$ "
T or F 15) If P is a partition of A, then R creates the sets given by P
Tor F 16) R cannot be both symmetric and antisymmetric.

Part 2: Definitions and Concepts
(20 points each)
17) For the relation diagram below, write out the relation as a set.

18) Perform the following operations in \mathbb{Z}_{50}.
$40+25 \equiv$
$15-40 \equiv$
19) Find $7 \cdot 8 \bmod 50$
20) Solve the equation below in \mathbb{Z}_{50}.
$17 x \equiv 1$
21) Find all "square roots of 1 " mod 8.
22) Solve the equation below.
$3 x+12 \equiv 34 \bmod 20$

Part 3: Proofs

NOTE: This test may be a little long. Hence you may skip TWO of the proofs by writing "Skip". However, if you have extra time you can gamble for extra credit: for each attempted proof beyond 2, you will receive a -60 point penalty along with whatever point(s) you earn on that problem.
23) Let R be the relation on the set $\{A, B\} \times \mathbb{R}$ given by $\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right)$ iff:
both $x_{1}=x_{2}$ and $y_{1} \leq y_{2}$ or both $x_{1}=A$ and $x_{2}=B$

It is a fact that R is a partial order relation. Below is part of that proof. Fill in the missing details. (100 points)

Claim: R is antisymmetric.
Line Statements Reasoning
(1) $\quad\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right) \quad$ Premise
(2) \qquad Premise

Case 1: $x_{1}=x_{2}$:
(3) $y_{1} \leq y_{2}$
(4) $\quad y_{2} \leq y_{1}$
(5) $\quad y_{1}=y_{2}$

The antisymmetric property of \mathbb{R} applied to lines 3 and 4.

Case 2: $x_{1} \neq x_{2}$:
(6) This case is not possible because either line (1) or line (2) would be false.
(7) $\quad\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \quad$ Rephrase the conclusion from case (1), while case (2) was impossible.
(8) $\quad R$ is antisymmetric The definition of antisymmetric applied to lines (1), (2), and (7)
24) Prove the statement below for all $n \geq 1$

$$
\sum_{j=1}^{n} j(j+1)=\frac{n(n+1)(n+2)}{3}
$$

(100 points)
25) Prove the statement below for all $n \geq 6$.

$$
n^{3}<n!
$$

(100 points)
26) Prove the statement below for all $n \geq 1$.

$$
5 \mid 11^{n}-6
$$

(100 points)

