Part 1: True or False. Circle the correct answer.

(10 points each)

Let *R* be the relation on \mathbb{Z} given by xRy iff $(x + y)^2 = x^2 + y^2$

T o(F) *R* is reflexive.

- \bigcirc F 2) R is symmetric.
- T o(\mathbb{F} 3) *R* is antisymmetric.
- T or (E) *R* is transitive.
- T o(E)5) *R* is an equivalence relation.
- T o(\mathbb{F}_6) *R* is a partial order relation.

Let *S* be the relation on the set of real polynomials with variable *x* given by fSg iff $f(0) \ge g(0)$

- (T) or F 7) S is reflexive.
- T o (F)8) *S* is symmetric.

T o(F)) S is antisymmetric.

- \bigcirc r F 10) *S* is transitive.
- T o(\mathbb{F} 11) *S* is an equivalence relation.
- T o(\mathbb{F} 12) *S* is a partial order relation.

Let A be a set and R a relation on A.

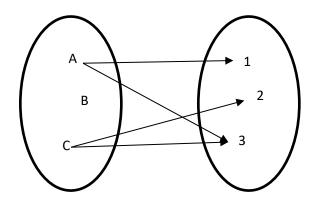
- (D) r = 13) If R is an equivalence relation, it creates a partition of A.
- T o(E)14) If R is an partial order relation, it generalizes the idea of inequality, "<"
- T o(\mathbb{F} 15) If P is a partition of A, then R creates the sets given by P
- T o(E) *R* cannot be both symmetric and antisymmetric.

Part 2: Definitions and Concepts

(20 points each)

17) For the relation diagram below, write out the relation as a set.

$\{(A,1),(A,3),(C,2),(C,3)\}$



18) Perform the following operations in $\mathbb{Z}_{50}.$

 $40 + 25 \equiv 65 \equiv 15$

 $15-40 \equiv -25 \equiv 25$

19) Find $7\cdot 8\ mod\ 50.$

 $7\cdot 8\equiv 56\equiv 6$

20) Solve the equation below in $\mathbb{Z}_{50}.$

 $17x \equiv 1$

$$17x \equiv 51 \equiv 17 \cdot 3$$
$$x = 3$$

21) Find all "square roots of 1" mod 8.

1, 3, 5 and 7

22) Solve the equation below.

 $3x + 12 \equiv 34 \mod 20$

$$3x + 12 \equiv 14$$
$$3x \equiv 2$$
$$3x \equiv 22$$
$$3x \equiv 42 \equiv 14 \cdot 3$$
$$x \equiv 14$$

Part 3: Proofs

NOTE: This test may be a little long. Hence you may skip TWO of the proofs by writing "Skip". However, if you have extra time you can gamble for extra credit: for each attempted proof beyond 2, you will receive a -60 point penalty along with whatever point(s) you earn on that problem.

23) Let *R* be the relation on the set $\{A, B\} \times \mathbb{R}$ given by $(x_1, y_1)R(x_2, y_2)$ iff: both $x_1 = x_2$ and $y_1 \le y_2$ or both $x_1 = A$ and $x_2 = B$

It is a fact that R is a partial order relation. Below is part of that proof. Fill in the missing details. (100 points)

<i>Claim:</i> Line	<i>R is antisymmetric.</i> Statements	Reasoning
(1)	$(x_1, y_1)R(x_2, y_2)$	Premise
(2)	$(x_2, y_2)R(x_1, y_1)$	Premise
Case 1: $x_1 = x_2$: (3) $y_1 \le y_2$		_The definition of <i>R</i> applied to line 1_
(4)	$y_2 \leq y_1$	_The definition of <i>R</i> applied to line 2 _
(5)	$y_1 = y_2$	The antisymmetric property of ${\mathbb R}$ applied to lines 3 and 4.

Case 2: $x_1 \neq x_2$:

(6) This case is not possible because either line (1) or line (2) would be false.

(7)	$(x_1, y_1) = (x_2, y_2)$	Rephrase the conclusion from case (1), while case (2) was impossible.
(8)	R is antisymmetric	The definition of antisymmetric applied to lines (1), (2), and (7)

24) Prove the statement below for all $n \ge 1$

$$\sum_{j=1}^{n} j(j+1) = \frac{n(n+1)(n+2)}{3}$$

(100 points)

Base Case (n = 1):

$$\sum_{j=1}^{1} j(j+1) = 1(1+1) = 2 = \frac{2 \cdot 3}{3} = \frac{1(1+1)(1+2)}{3}$$

Assume $\sum_{j=1}^{k} j(j+1) = \frac{k(k+1)(k+2)}{3}$ for some $k \in \mathbb{N}$

$$\sum_{j=1}^{k+1} j(j+1) = (k+1)(k+2) + \sum_{j=1}^{k} j(j+1)$$
$$= (k+1)(k+2) + \frac{k(k+1)(k+2)}{3}$$
$$= (k+1)(k+2)\left(1+\frac{k}{3}\right)$$
$$= (k+1)(k+2)\left(\frac{3+k}{3}\right)$$
$$= \frac{(k+1)(k+2)(k+3)}{3}$$

Therefore, for all $n \ge 1$

$$\sum_{j=1}^{n} j(j+1) = \frac{n(n+1)(n+2)}{3}$$

25) Prove the statement below for all $n \ge 6$.

$$n^3 < n!$$

(100 points)

Base case:

$$6^3 = 6 \cdot 6 \cdot 6 = 2 \cdot 3 \cdot 6 \cdot 6 \le 2 \cdot 3 \cdot 20 \cdot 6 = 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 = 6!$$

Assume $k^3 < k!$ For some $k \in \mathbb{Z}$ with $k \ge 6$.

$$(k + 1)! = (k + 1)k! > (k + 1)k^{3}$$

= $k^{4} + k^{3} = k^{3} + k^{4}$
 $\ge k^{3} + 36k^{2} \ge k^{3} + 7k^{2}$
= $k^{3} + 3k^{2} + 3k^{2} + k^{2}$
 $\ge k^{3} + 3k^{2} + 3k + 1$
= $(k + 1)^{3}$

Therefore, for all $n \ge 6$

 $n^{3} < n!$

26) Prove the statement below for all $n \ge 1$.

$$5|11^n - 6$$

(100 points)

Base case: $11^1 - 6 = 5$, and 5|5.

Assume $5|11^k - 6$ for some $k \in \mathbb{N}$. This means that $11^k - 6 = 5m$ for some $m \in \mathbb{Z}$.

$$11^{k+1} - 6 = 11 \cdot 11^k - 6 = 11^k - 6 + 10 \cdot 11^k = 5m + 10 \cdot 11^k = 5(m + 2 \cdot 11^k)$$

Thus $5|11^{k+1} - 6$, and so for all $n \ge 1$ we get

$$5|11^n - 6$$