Quiz 1 \qquad

Part 1: Definitions and Concepts

1) Let P and Q be true statements and R be a false statement. Answer true or false for each of the following.

Tor F (I) $\quad P \wedge Q$
Tor F (II) $\quad P \vee Q$
Toff (III) $\quad Q \wedge R$
Tor F (IV) $\quad R \Rightarrow R$
T or $\mathrm{F}(\mathrm{V}) \quad P \Rightarrow R$
2) Determine whether the following are true or false.

Tor F (I) $\quad \forall_{x \in \mathbb{R}}\left(x^{2}+2 \geq 0\right)$
Tor F (II) $\quad \exists_{x \in \mathbb{R}}\left(x^{2}+2 \geq 0\right)$
T of (III) $\quad \forall_{x \in \mathbb{Z}}(x+2=5)$
Tor F (IV) $\quad \forall_{x \in \mathbb{R}} \exists_{y \in \mathbb{R}}(x+1=y)$
T or $(\mathrm{V}) \quad \exists \exists_{y \in \mathbb{R}} \forall_{x \in \mathbb{R}}(x+1=y)$
3) Let P be the statement "The fiddle will be played" and Q be the statement "The performer is on stage". What is the logical symbolism for "The fiddle will be played whenever the performer is on stage"?

$$
Q \Rightarrow P
$$

Part 2: Proofs
Some definitions and theorems are provided. Provide a proof as directed on the problem below.
(D1) $|x|=\left\{\begin{aligned} x, & \text { if } x \geq 0 \\ -x, & \text { if } x<0\end{aligned}\right.$ for all real numbers x
(PT1) Previous Theorem 1: $|x y|=|x| \cdot|y|$ for all real numbers x and y.
(PT2) Previous Theorem 2: $|x-y|=|y-x|$ for all real numbers x and y.
4) Let a and b be real numbers such that $b \neq 0$. Prove that $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$.

Let a and b be real numbers such that $b \neq 0$. Note that we can change division to multiplication by a fraction:

$$
\left|\frac{a}{b}\right|=\left|a \cdot \frac{1}{b}\right|=|a| \cdot\left|\frac{1}{b}\right|
$$

Then because $1 \geq 0,\left|\frac{1}{b}\right|=\frac{1}{|b|}$ in all cases. Hence we conclude:

$$
\left|\frac{a}{b}\right|=|a| \cdot\left|\frac{1}{b}\right|=|a| \cdot \frac{1}{|b|}=\frac{|a|}{|b|}
$$

