Quiz 1 _____

Part 1: Definitions and Concepts

1) Let P and Q be true statements and R be a false statement. Answer true or false for each of the following.

T or F	(1)	$P \land Q$
T or F	(11)	$P \lor Q$
T or F	(111)	$Q \wedge R$
T or F	(IV)	$R \Rightarrow R$
T or F	(V)	$P \Rightarrow R$

2) Determine whether the following are true or false.

T or F	(I)	$\forall_{x \in \mathbb{R}} (x^2 + 2 \ge 0)$
T or F	(11)	$\exists_{x\in\mathbb{R}}(x^2+2\geq 0)$
T or F	(111)	$\forall_{x\in\mathbb{Z}}(x+2=5)$
T or F	(IV)	$\forall_{x \in \mathbb{R}} \exists_{y \in \mathbb{R}} (x + 1 = y)$
T or F	(V)	$\exists_{y \in \mathbb{R}} \forall_{x \in \mathbb{R}} (x + 1 = y)$

3) Let P be the statement "The fiddle will be played" and Q be the statement "The performer is on stage". What is the logical symbolism for "The fiddle will be played whenever the performer is on stage"?

Part 2: Proofs

Some definitions and theorems are provided. Provide a proof as directed on the problem below.

(D1) $|x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$ for all real numbers x

(PT1) Previous Theorem 1: $|xy| = |x| \cdot |y|$ for all real numbers x and y.

- (PT2) Previous Theorem 2: |x y| = |y x| for all real numbers x and y.
- 4) Let *a* and *b* be real numbers such that $b \neq 0$. Prove that $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$.