Name: \qquad

Part 1: Definitions and Concepts

1) Let n be an integer. State the definition for n to be an even integer. Be precise: vague answers will be given no credit.

The integer n is even if there is some integer k such that $n=2 k$.

OR

$$
\exists_{k \in \mathbb{Z}}(n=2 k)
$$

Partial credit varies based on what you said.

No credit if you do not specify the equation $n=2[$ something $]$ somewhere.
2) Let n and m be integers. State the definition for n to divide m. Be precise: vague answers will be given no credit.

The integer n divides the integer m if there is some integer k such that $m=k n$.

OR

$$
n \text { is odd if } \exists_{k \in \mathbb{Z}}(m=k n)
$$

Partial credit varies based on what you said.

No credit if you do not specify the equation $n=k m$ or the incorrect equation $k n=m$ somewhere.
3) Determine whether the following are true or false.

Tor F (I) 5|20
T orF (II) $\quad 3 \mid 20$
T of F (III) $\quad 12 \mid 4$
Tor F (IV) 18 is even.
Tor F (V) 0 is even.

Part 2: Proofs

4) Let n be an even number. Prove that $n+7$ is an odd number.

Let n be an even number. Then we can write $n=2 k$ for some $k \in \mathbb{Z}$. Now we show that $n+7$ is odd:

$$
n+7=2 k+7=2 k+6+1=2(k+3)+1
$$

Because $k+3 \in \mathbb{Z}$, the above equation shows that $n+7$ is odd.

