Name \qquad

Part 1: Definitions and Concepts

1) Illustrate $(A \cap B) \cup C$ on a Venn Diagram.
(50 points)
2) Give the definition of intersection, in the context of sets A and B. Be precise. (50 points)
3) Let $A=\{1,2,3,4\}$ and $B=\{3,4,5,6\}$. Find $A-B$
(25 points)
4) Let $A=\{1,2,3,4\}$ and $B=\{3,4,5,6\}$. Find $A \cup B$ (25 points)
5) Let $A=[1,4]$ and $B=(3,6)$. Find $A-B$
(25 points)
6) Let $A=[1,4]$ and $B=(3,6)$. Find $A \cup B$
(25 points)
7) Find the intersection below.
(50 points)

$$
\bigcap_{j=5}^{\infty}\left(1-\frac{1}{j}, 2-\frac{1}{j}\right)
$$

8) Answer each of the following as true or false.
(10 points each)
Tor F (I) Mathematical induction is used to prove a universally quantified statement.
T or F (II) Mathematical induction requires a base case.
Tor F (III) The induction hypothesis in mathematical induction is an assumption.
T or F (IV) Mathematical induction proves a given statement in infinitely many cases.
T or F (V) Mathematical induction is used to prove expressions that are not statements.

Part 2: Proofs

9) Let A, B, and C be sets. Prove that $A \cap(B-C) \subseteq A \cap B$. (100 points)
10) Prove the following statement for all natural numbers n :
(100 points)

$$
\sum_{j=1}^{n} \frac{j}{(j+1)!}=1-\frac{1}{(n+1)!}
$$

11) Using Induction, prove ONE of the statements below.
(100 points)

$$
\begin{gathered}
n^{3}<n!\text { for all integers } n \geq 7 \\
\left(\text { Hint } 7^{3}=343 \text { and } 7!=5040\right)
\end{gathered}
$$

OR

For all natural numbers n : $8 \mid 5^{2 n}-1$

