Name \qquad

Part 1: Basic Knowledge (5 points each, 10 points total)

1) Let I be an index set and A_{k} a set for each $k \in I$. Define what the notation below means.

$$
\bigcap_{j \in I} A_{j}
$$

2) Let $f: A \rightarrow B$ be a function. Define what it means for f to be surjective, also known as onto.

Part 2: Basic Skills and Concepts (5 points each, 20 points total)
3) Answer true or false:
a) $5 \in\{5\}$
b) $\{5\} \in\{5\}$
c) $5 \subseteq\{5\}$
d) $\{5\} \subseteq\{5\}$
e) $5=\{5\}$
4) Multiple choice: Which of the following excerpts of LaTeX code will create the symbol below.
a) $\backslash \operatorname{sum} _\{k=1\}^{\wedge} 5 k^{\wedge} 2$
b) $\$ \$ \backslash$ sum_ $\{k=1\}^{\wedge} 5 k^{\wedge} 2 \$ \$$
c) $[$ math $] \backslash$ sum_ $\{k=1\}^{\wedge} 5 k^{\wedge} 2[\backslash$ math $]$
d) \start\sum_\{k=1\}^5 $k^{\wedge} 2 \backslash e n d$

$$
\sum_{k=1}^{5} k^{2}
$$

5) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=5 x+6$. Answer true or false:
a) f is surjective
b) f is decreasing
c) f has an inverse
d) f is an identity
e) The domain of f is $5 x+6$
6) Let $A=[4,7]$ and $B=(5,12)$. Find:
a) $A \cup B$
b) $A \cap B$
c) $A-B$

Part 4: Proofs (10 points each, 60 points total)
7) Let f be defined below. Prove that f is surjective.

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto 7 x-12
\end{aligned}
$$

8) Let g be defined below. Prove that g is injective.

$$
\begin{aligned}
g: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto 5 x+8
\end{aligned}
$$

9) Let f be defined below. Prove that f has an inverse.

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto 2 x
\end{aligned}
$$

10) Prove theorem T68 on the theorem sheet, using only earlier theorems.
11) Prove theorem $T 85$ on the theorem sheet, using only earlier theorems.
12) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions such that $g \circ f: A \rightarrow C$. Prove that $g: B \rightarrow C$. (Hint: Recall that \rightarrow means surjective)

Part 5: Review (5 points each, 10 points total)
13) Let P and Q be statements. Make the truth table for $P \Rightarrow Q$.
14) Prove that then $5 x>8$ whenever $x>2$.

