Part 1: Basic Knowledge (5 points each, 10 points total)

1) Let I be an index set and A_k a set for each $k \in I$. Define what the notation below means.

 $\bigcap_{j\in I}A_j$

2) Let $f: A \rightarrow B$ be a function. Define what it means for f to be <u>surjective</u>, also known as <u>onto</u>.

Part 2: Basic Skills and Concepts (5 points each, 20 points total)

3) Answer true or false:

- a) 5 ∈ {5}
- b) $\{5\} \in \{5\}$
- c) 5 ⊆ {5}
- d) $\{5\} \subseteq \{5\}$
- e) $5 = \{5\}$

4) Multiple choice: Which of the following excerpts of LaTeX code will create the symbol below.

- a) $\sum \{k=1\}^5 k^2$
- b) \$ um {k=1}^5 k^2\$
- c) [math] $sum_{k=1}^5 k^2 [math]$
- d) $\start\sum {k=1}^5 k^2\end$

5) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 5x + 6. Answer true or false:

- a) *f* is surjective
- b) *f* is decreasing
- c) *f* has an inverse
- d) f is an identity
- e) The domain of f is 5x + 6

6) Let A = [4,7] and B = (5,12). Find:

- a) $A \cup B$
- b) $A \cap B$
- c) *A* − *B*

Part 4: Proofs (10 points each, 60 points total)

7) Let f be defined below. Prove that f is surjective.

 $\begin{array}{c} f \colon \mathbb{R} \to \mathbb{R} \\ x \mapsto 7x - 12 \end{array}$

8) Let g be defined below. Prove that g is injective.

 $g: \mathbb{R} \to \mathbb{R}$ $x \mapsto 5x + 8$

9) Let f be defined below. Prove that f has an inverse.

 $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto 2x$

10) Prove theorem T68 on the theorem sheet, using only earlier theorems.

11) Prove theorem T85 on the theorem sheet, using only earlier theorems.

12) Let $f: A \to B$ and $g: B \to C$ be functions such that $g \circ f: A \twoheadrightarrow C$. Prove that $g: B \twoheadrightarrow C$. (Hint: Recall that \twoheadrightarrow means surjective) Part 5: Review (5 points each, 10 points total)

13) Let *P* and *Q* be statements. Make the truth table for $P \Rightarrow Q$.

14) Prove that then 5x > 8 whenever x > 2.