Name \qquad

Part 1: Basic Knowledge (5 points each, 10 points total)

1) Let R be a relation on a set X. Define, precisely, what it means for R to be transitive.
2) In \mathbb{Z}_{10}, we would like to relate " 5 " and " 15 ". Answer the following as using correct (C) notation or incorrect (I) notation.

C I a) $\quad 5 \equiv_{10} 15$
C I b) $\quad 15={ }_{10} 5$
C (c) $5 \equiv 15 \bmod 10$
C I d) $15 \equiv 5 \bmod 10$
C 1 e) $5 \bmod 10 \equiv 15$
C I f) $15 \bmod 10 \equiv 5$
C I g) $\quad[5]_{10}=[15]_{10}$
$\mathrm{C} \mid \mathrm{h}) \quad(5)_{10}=(15)_{10}$
C I i) $\quad\langle 5\rangle_{10}=\langle 15\rangle_{10}$
C I j) $\quad 15 \rightarrow 5$ conj. 10

Part 2: Basic Skills and Concepts (5 points each, 20 points total)
3) Let $X=\{a, b, c, d\}$ and the relation R be defined by $a R a, b R b, c R c, d R d, a R b$, and $b R a$. It is known that R is an equivalence relation, and thus creates a partition on X. Illustrate that partition.
4) Let $X=\{a, b, c, d, e\}$ and construct a partial order relation according to the series of number lines below. What is R ? Define it by putting a check (\checkmark) in each entry of the table below where row element relates to the column element. $a R b$ is checked for you as an example.

	a	b	c	d	e
a		\checkmark			
b					
c					
d					
e					

5) Compute the following:
a) $4 \cdot 8+5$ in \mathbb{Z}_{7}
b) $6 \cdot 6 \mathrm{in} \mathbb{Z}_{4}$
6) Solve for x :

$$
3 x+2 \equiv_{5} 4
$$

Part 4: Proofs (10 points each, 50 points total)
7) Let R be the relation defined on \mathbb{N} given by: $x R y$ iff x and y have the same number of 2 's in their prime factorization. For example, 48R80 because $48=2^{4} \cdot 3$ and $80=2^{4} \cdot 5$. Prove that R is transitive.
8) Let \preccurlyeq be the relation defined on \mathbb{N} given by: $x \leqslant y$ iff x has fewer or equal to 2 's in its prime factorization than y. For example, $36 \leqslant 80$ because $36=2^{2} \cdot 3^{2}, 80=2^{4} \cdot 5$, and $2 \leq 4$. Prove that \leqslant is not antisymmetric.
9) Consider \mathbb{Z} under the " $\bmod n$ " relation. We know that this relation partitions \mathbb{Z} into n sets:

$$
\mathbb{Z}_{n}=\{[0],[1],[2], \cdots[n-2],[n-1]\}
$$

The definition of a partition \mathcal{P} of a set A includes three things, written below. Prove part (c) for the "mod n " relation.
a) If $X \in \mathcal{P}$, then $X \neq \varnothing$
b) If $X \in \mathcal{P}$ and $Y \in \mathcal{P}$ are different sets, then $X \cap Y=\varnothing$.
c) $A=\cup_{X \in \mathcal{P}} X$
10) Prove that for all $n \in \mathbb{N}$,

$$
\sum_{j=1}^{n} 3^{j}=\frac{3^{n+1}-3}{2}
$$

11) Prove that for all $n \in \mathbb{N}$,

$$
3+11+19+\cdots+(8 n-5)=4 n^{2}-n
$$

Part 5: Review (5 points each, 20 points total)
12) Assume P is true, Q is true, and R is false. What is $(P \vee Q) \Rightarrow(P \wedge R)$?
13) Find the negation of $\forall_{x \in \mathbb{R}} \exists_{y \in \mathbb{Z}}(3 x+2 y=7)$
14) Answer true or false to each of these. Assume $f: \mathbb{R} \rightarrow \mathbb{R}$.

T F a) $\quad f(x)=3 x+2$ is one-to-one.
T F b) $\quad f(x)=3 x+2$ is onto.
T F c) $\quad f(x)=x^{3}$ is one-to-one.
T F d) $\quad f(x)=x^{3}$ is onto.
T F e) $\quad f(x)=\tan ^{-1}(x)$ is one-to-one.
15) Let $X=\{1,2,3,4,5\}$ and $Y=(2,4]$. Find $X \cap Y$.

Part 6: Bonus Question (10 bonus points)
16) Prove that for all $n \in \mathbb{N}$,

$$
n!\geq 2^{n-1}
$$

