Part 1: Basic Knowledge (5 points each, 10 points total)

1) Let *R* be a relation on a set *X*. Define, precisely, what it means for *R* to be <u>transitive</u>.

2) In \mathbb{Z}_{10} , we would like to relate "5" and "15". Answer the following as using correct (C) notation or incorrect (I) notation.

- 5 ≡₁₀ 15 C I a) $15 =_{10} 5$ CIb) C I c) $5 \equiv 15 \mod 10$ CId) $15 \equiv 5 \mod 10$ Cle) $5 \mod 10 \equiv 15$ C I f) $15 \mod 10 \equiv 5$ $[5]_{10} = [15]_{10}$ C I g) $(5)_{10} = (15)_{10}$ C I h) $\langle 5 \rangle_{10} = \langle 15 \rangle_{10}$ CIi)
- C I j) $15 \rightarrow 5$ conj. 10

Part 2: Basic Skills and Concepts (5 points each, 20 points total)

3) Let $X = \{a, b, c, d\}$ and the relation R be defined by aRa, bRb, cRc, dRd, aRb, and bRa. It is known that R is an equivalence relation, and thus creates a partition on X. Illustrate that partition.

4) Let $X = \{a, b, c, d, e\}$ and construct a partial order relation according to the series of number lines below. What is *R*? Define it by putting a check (\checkmark) in each entry of the table below where row element relates to the column element. *aRb* is checked for you as an example.

	а	b	С	d	е		•		•		•	
а		~				\leftarrow	a				h	\rightarrow
b							u		U		2	
С								-		-		
d						\leftarrow		d		- e -		\rightarrow
е								u		C		

5) Compute the following:

a) $4 \cdot 8 + 5$ in \mathbb{Z}_7

b) $6 \cdot 6$ in \mathbb{Z}_4

6) Solve for *x*:

 $3x + 2 \equiv_5 4$

Part 4: Proofs (10 points each, 50 points total)

7) Let *R* be the relation defined on \mathbb{N} given by: xRy iff x and y have the same number of 2's in their prime factorization. For example, 48R80 because $48 = 2^4 \cdot 3$ and $80 = 2^4 \cdot 5$. Prove that *R* is transitive.

8) Let \leq be the relation defined on \mathbb{N} given by: $x \leq y$ iff x has fewer or equal to 2's in its prime factorization than y. For example, $36 \leq 80$ because $36 = 2^2 \cdot 3^2$, $80 = 2^4 \cdot 5$, and $2 \leq 4$. Prove that \leq is *not* antisymmetric.

9) Consider \mathbb{Z} under the "mod n" relation. We know that this relation partitions \mathbb{Z} into n sets: $\mathbb{Z}_n = \{[0], [1], [2], \cdots [n-2], [n-1]\}$

The definition of a partition \mathcal{P} of a set A includes three things, written below. Prove part (c) for the "mod n" relation.

- a) If $X \in \mathcal{P}$, then $X \neq \emptyset$
- b) If $X \in \mathcal{P}$ and $Y \in \mathcal{P}$ are different sets, then $X \cap Y = \emptyset$.
- c) $A = \bigcup_{X \in \mathcal{P}} X$

10) Prove that for all $n \in \mathbb{N}$,

$$\sum_{j=1}^{n} 3^{j} = \frac{3^{n+1} - 3}{2}$$

11) Prove that for all $n \in \mathbb{N}$,

 $3 + 11 + 19 + \dots + (8n - 5) = 4n^2 - n$

Part 5: Review (5 points each, 20 points total)

12) Assume P is true, Q is true, and R is false. What is $(P \lor Q) \Rightarrow (P \land R)$?

13) Find the negation of $\forall_{x \in \mathbb{R}} \exists_{y \in \mathbb{Z}} (3x + 2y = 7)$

- 14) Answer true or false to each of these. Assume $f: \mathbb{R} \to \mathbb{R}$.
 - T F a) f(x) = 3x + 2 is one-to-one.
 - T F b) f(x) = 3x + 2 is onto.
 - T F c) $f(x) = x^3$ is one-to-one.
 - T F d) $f(x) = x^3$ is onto.
 - T F e) $f(x) = \tan^{-1}(x)$ is one-to-one.

15) Let $X = \{1, 2, 3, 4, 5\}$ and Y = (2, 4]. Find $X \cap Y$.

Part 6: Bonus Question (10 bonus points)

16) Prove that for all $n \in \mathbb{N}$,

$$n! \ge 2^{n-1}$$