Name $\qquad$ Test 1, Fall 2022

Throughout the test, unless otherwise specified, you may assume $P, Q$, and $R$ are statements, $x, y$, and $z$ are real numbers, $m, n, r$ and $s$ are integers.

## Part 1: Basic Knowledge

1) Give a precise definition of an odd integer. (5 points)
2) Give a precise definition of an open statement. (5 points)
3) Answer each of the following. (1 points each)

T F a) This is a universal statement: Every cat has nine lives.
T F b) This is a universal statement: Fluffly has nine lives.
T F c) This is a universal statement: Whenever fluffy falls, she expends a life.

T F d) This is an existential statement: If you score an A, you have done well.
$\mathrm{T} F \mathrm{e}$ ) This is an existential statement: There is somebody that has scored an A.
T F f) This is an existential statement: Michael scored an A.

T F g) $P \Rightarrow Q$ is equivalent to $Q \Rightarrow P$
T F h) $P \Rightarrow Q$ is equivalent to $\sim Q \Rightarrow \sim P$
T Fi) $P \Rightarrow Q$ is equivalent to $\sim P \Rightarrow \sim Q$

T Fj) $P \vee \sim P$

Part 2: Basic Skills and Concepts (5 points each, 20 points total)
4) Give the complete truth table for $P \Rightarrow \sim(Q \vee P)$.
5) Simplify $\sim(P \wedge(P \Rightarrow Q))$ so that negations are applied only to individual statements.
6) Answer each of the following. A true/false question is true if it is always true and false if it is ever false. (1 points each)

T F a) If $x>0$, then $|x|=x$
T F b) If $x<0$, then $|x|=-x$
T Fc) $|x| \geq 0$
T Fd) If I know a statement is true, it must be true.
T Fe ) If a statement is true, some person must know it is true.
T F f) Mathematics proves a "God" exists because there must be must be some being that knows the truth value of all statements. We call that being "God".

T Fg) $\forall_{x \in \mathbb{R}} \forall_{y \in R}(x+y=5)$
T Fh) $\forall_{x \in \mathbb{R}} \exists_{y \in R}(x+y=5)$
T Fi) $\exists_{x \in \mathbb{R}} \forall_{y \in R}(x+y=5)$
T F j) $\exists_{x \in \mathbb{R}} \exists_{y \in R}(x+y=5)$

Part 3: Proofs (10 points each, 60 points total)
7) Prove that for all integers $n, 1$ divides $n$. That is,

$$
\forall_{n \in \mathbb{Z}}(1 \mid n)
$$

8) Let $x$ and $y$ be integers. Prove that if $x$ is odd and $y$ is even, then $3 x+4 y$ is odd.
9) Let $x$ be a real number. Prove that if $x$ is rational, then twice $x$ is also rational. That is, $x \in \mathbb{Q} \Rightarrow 2 x \in \mathbb{Q}$
10) Let $x$ be a real number. If $x^{3}+2 x^{2}<0$, then $2 x+5<11$
11) Consider this supposed theorem: "If $n$ is even, then lightsabers are real". We may have a difficult time proving this theorem, but it is hopefully pretty clear what the first two lines and last line of such a proof would likely be. Fill in those blanks below. You need not provide justification.

Proof that if $n$ is even, then lightsabers are real

1) $\qquad$
2) $\qquad$
[Intermediate steps are omitted]
!
3) $\qquad$

Now suppose we have a difficult time proving this theorem, so we turn to the contrapositive! We may still have a difficult time proving the theorem, but again it should be clear what the first and last two lines of such a proof would likely be. Fill in those blanks below. You need not provide justification.

Proof that if $n$ is even, then lightsabers are real

1) $\qquad$
!
[Intermediate steps are omitted]
!
2) 
3) Therefore, if $n$ is even, then lightsabers are real

2-point Bonus: What should would 12 in the above proof likely be?
12)

