Name ______ Test 1, Fall 2022

Throughout the test, unless otherwise specified, you may assume P, Q, and R are statements, x, y, and zare real numbers, *m*, *n*, *r* and *s* are integers.

Part 1: Basic Knowledge

1) Give a precise definition of an odd integer. (5 points)

n is odd if n = 2k + 1 for some integer k.

n is odd if $\exists_{k \in \mathbb{Z}} (n = 2k + 1)$

		Quest	tion 1 r=	=0.49		
9 ₇						
8 -					٠	
7 -		•	•		٠	
6 -		•			•	
5 -		•			٠	
4 -		•			٠	
3 -		•	•		٠	
2 -	•				٠	
1 -		•	•		•	
0		1	1	1		
0	1	2	3	4	5	6

2) Give a precise definition of an open statement. (5 points)

A sentence or mathematical expression with a variable. When a value is substituted for the variable, it becomes a statement.

		Questi	on 2 r=	0.831		
8 7						
7 -					٠	
6 -		•			٠	
5 -		•			٠	
4 -		•			٠	
3 -		•			٠	
2 🔶	•				٠	
1 🔶		•			٠	
0	1		1			
0	1	2	3	4	5	6

- 3) Answer each of the following. (1 points each)
- **T** F a) This is a universal statement: Every cat has nine lives.
- T (F)) This is a universal statement: Fluffly has nine lives.
- T (F): This is a universal statement: Whenever fluffy falls, she expends a life.
- T (Fd) This is an existential statement: If you score an A, you have done well.
- T F e) This is an existential statement: There is somebody that has scored an A.
- T (F) This is an existential statement: Michael scored an A.
- T (F)g) $P \Rightarrow Q$ is equivalent to $Q \Rightarrow P$
- **(T)** F h) $P \Rightarrow Q$ is equivalent to $\sim Q \Rightarrow \sim P$
- T (F) $P \Rightarrow Q$ is equivalent to $\sim P \Rightarrow \sim Q$

Part 2: Basic Skills and Concepts (5 points each, 20 points total)

4) Give the complete truth table for $P \Rightarrow \sim (Q \lor P)$.

Р	Q	$Q \lor P$	$\sim (Q \lor P)$	$P \Rightarrow \sim (Q \lor P)$
Т	Т	Т	F	F
Т	F	Т	F	F
F	Т	Т	F	Т
F	F	F	Т	Т

5) Simplify $\sim (P \land (P \Rightarrow Q))$ so that negations are applied only to individual statements.

$$\sim (P \land (P \Rightarrow Q))$$

$$\sim P \lor \sim (P \Rightarrow Q)$$

$$\sim P \lor (P \land \sim Q)$$

Question 5 r=0.627						
10 7						
9 -		•				
8 -		•				
7 -		•				
6 -		•			٠	
5 -		•			٠	
4 -		•			٠	
3 -		•			•	
2 -		•			٠	
1 -		•			٠	
0	1	1	1	1		
0	1	2	3	4	5	6

6) Answer each of the following. A true/false question is true if it is *always* true and false if it is *ever* false. (1 points each)

T F a) If x > 0, then |x| = xF b) If x < 0, then |x| = -xF c) $|x| \ge 0$

(T) F d) If I know a statement is true, it must be true.

T (Fe) If a statement is true, some person must know it is true.

- T (F) Mathematics proves a "God" exists because there must be must be some being that knows the truth value of all statements. We call that being "God".
- T (Fg) $\forall_{x \in \mathbb{R}} \forall_{y \in R} (x + y = 5)$ (T) F h) $\forall_{x \in \mathbb{R}} \exists_{y \in R} (x + y = 5)$
- T F) $\exists_{x \in \mathbb{R}} \forall_{y \in R} (x + y = 5)$
- **T** F j) $\exists_{x \in \mathbb{R}} \exists_{y \in R} (x + y = 5)$

Part 3: Proofs (10 points each, 60 points total)

7) Prove that for all integers n, 1 divides n. That is,

 $\forall_{n\in\mathbb{Z}}(1|n)$

Let m be an integer.	
$\therefore m = m \cdot 1$	Algebra
$\therefore 1 m$	Definition of divides.
$\therefore 1 n$ for all integers n .	Universal Generalization

OR

Let n be an integer. Then $m = m \cdot 1$, which satisfies the definition of divides. Therefore 1|m. Because m was arbitrary, we may generalize it to say that 1|n for all integers n.

8) Let x and y be integers. Prove that if x is odd and y is even, then 3x + 4y is odd.

Definition of odd.
Definition of even.
Plug in & simplify
Definition of odd.

OR

Assume x is odd and y is even. Then x = 2k + 1 and $y = 2k_2$ for some integers k, k_2 . Plug these into our desired expression to get:

 $3x + 4y = 3(2k + 1) + 4(2k_2) = 6k + 3 + 8k_2 = 2(3k + 4k_2 + 1) + 1$ Therefore by the definition of odd, we see that 3x + 4y is odd.

9) Let x be a real number. Prove that if x is rational, then twice x is also rational. That is, $x \in \mathbb{Q} \Rightarrow 2x \in \mathbb{Q}$

Assume x is rational. Then we may write $x = \frac{a}{b}$ for some $a, b \in \mathbb{Z}$. Therefore $2x = \frac{2a}{b}$ which also satisfies the definition of rational because 2a is also an integer.

OR

Assume $x \in \mathbb{Q}$ $\therefore x = \frac{a}{b}$ for some a, b in \mathbb{Z} $\therefore 2x = \frac{2a}{b}$ $\therefore 2x \in \mathbb{Q}$

Definition of rational. Multiply the above by 2. Definition of rational.

10) Let *x* be a real number. If $x^3 + 2x^2 < 0$, then 2x + 5 < 11

Assume $x^3 + 2x^2 < 0$.	
$\therefore x^2(x+2) < 0$	Factor
$\therefore x + 2 < 0$	Positivity axiom and the fact that $x^2 > 0$
$\therefore 2x + 4 < 0$	Multiply the above by 2.
$\therefore 2x + 5 < 1$	Add 1 to each sides of the above.
$\therefore 2x + 5 < 11$	Transitive property on the above and $1 < 11$.

OR

Assume $x^3 + 2x^2 < 0$. Note that $x^3 + 2x^2 = x^2(x+2)$ and that $x^2 > 0$. Therefore by the positivity axiom we get x + 2 < 0. Some basic algebra then gives us: 2x + 5 = (x + 2) + (x + 2) + 1 < 0 + 0 + 1 < 11

OR use the contrapositive – I think most high scoring proofs did it that method, they look something like this:

 $2x + 5 \ge 11$ [math] $\therefore x \ge 3$ $\therefore x^3 + 2x^2 \ge [math] \ge 0$

11) Consider this supposed theorem: "If *n* is even, then lightsabers are real". We may have a difficult time proving this theorem, but it is hopefully pretty clear what the first two lines and last line of such a proof would likely be. Fill in those blanks below. You need not provide justification.

Proof that if *n* is even, then lightsabers are real

```
    Assume n is even.
    ∴ n = 2k for some k ∈ Z

            Intermediate steps are omitted]
            Intermediate steps are omitted]
```

17) \therefore lightsabers are real.

Now suppose we have a difficult time proving this theorem, so we turn to the *contrapositive*! We may still have a difficult time proving the theorem, but again it should be clear what the first and last two lines of such a proof would likely be. Fill in those blanks below. You need not provide justification.

Proof that if n is even, then lightsabers are real

1) Lightsabers at not real. : [Intermediate steps are omitted] :

13) ∴ n is not even.
14) Therefore, if n is even, then lightsabers are real

2-point Bonus: What should would 12 in the above proof likely be?

12) *n* is odd or n = 2(...) + 1

