Name \qquad Test 1, Fall 2022

Throughout the test, unless otherwise specified, you may assume P, Q, and R are statements, x, y, and z are real numbers, m, n, r and s are integers.

Part 1: Basic Knowledge

1) Give a precise definition of an odd integer. (5 points)
n is odd if $n=2 k+1$ for some integer k.
n is odd if $\exists_{k \in \mathbb{Z}}(n=2 k+1)$

2) Give a precise definition of an open statement. (5 points)

A sentence or mathematical expression with a variable. When a value is substituted for the variable, it becomes a statement.

3) Answer each of the following. (1 points each)
(T) F a) This is a universal statement: Every cat has nine lives.

T (F) This is a universal statement: Fluffly has nine lives.
T FC) This is a universal statement: Whenever fluffy falls, she expends a life.
T (Fd) This is an existential statement: If you score an A, you have done well.
(T) Fe) This is an existential statement: There is somebody that has scored an A.

T (F) This is an existential statement: Michael scored an A.
T Fg) $P \Rightarrow Q$ is equivalent to $Q \Rightarrow P$
(T) F h) $P \Rightarrow Q$ is equivalent to $\sim Q \Rightarrow \sim P$

T (F) $P \Rightarrow Q$ is equivalent to $\sim P \Rightarrow \sim Q$
(T) Fj$) \quad P \vee \sim P$

Part 2: Basic Skills and Concepts (5 points each, 20 points total)
4) Give the complete truth table for $P \Rightarrow \sim(Q \vee P)$.

P	Q	$Q \vee P$	$\sim(Q \vee P)$	$P \Rightarrow \sim(Q \vee P)$
T	T	T	F	F
T	F	T	F	F
F	T	T	F	T
F	F	F	T	T

5) Simplify $\sim(P \wedge(P \Rightarrow Q))$ so that negations are applied only to individual statements.

$$
\begin{aligned}
& \sim(P \wedge(P \Rightarrow Q)) \\
& \sim P \vee \sim(P \Rightarrow Q) \\
& \sim P \vee(P \wedge \sim Q)
\end{aligned}
$$

6) Answer each of the following. A true/false question is true if it is always true and false if it is ever false. (1 points each)
(T) F a) If $x>0$, then $|x|=x$
(T) F b) If $x<0$, then $|x|=-x$
(T) Fc) $|x| \geq 0$
(T) F d) If I know a statement is true, it must be true.

T Fe) If a statement is true, some person must know it is true.
T (Ff) Mathematics proves a "God" exists because there must be must be some being that knows the truth value of all statements. We call that being "God".

T (F)) $\forall_{x \in \mathbb{R}} \forall_{y \in R}(x+y=5)$
(T) Fh) $\forall_{x \in \mathbb{R}} \exists_{y \in R}(x+y=5)$

T (F) $\exists_{x \in \mathbb{R}} \forall_{y \in R}(x+y=5)$
(T) F j) $\exists_{x \in \mathbb{R}} \exists_{y \in R}(x+y=5)$

Part 3: Proofs (10 points each, 60 points total)
7) Prove that for all integers $n, 1$ divides n. That is,

$$
\forall_{n \in \mathbb{Z}}(1 \mid n)
$$

Let m be an integer.
$\therefore m=m \cdot 1$
$\therefore 1 \mid m$
$\therefore 1 \mid n$ for all integers n.

Algebra
Definition of divides.
Universal Generalization

OR

Let n be an integer. Then $m=m \cdot 1$, which satisfies the definition of divides. Therefore $1 \mid m$. Because m was arbitrary, we may generalize it to say that $1 \mid n$ for all integers n.

8) Let x and y be integers. Prove that if x is odd and y is even, then $3 x+4 y$ is odd.

Assume x is odd and y is even.
$\therefore x=2 k+1$ for some $k \in \mathbb{Z} \quad$ Definition of odd.
$\therefore y=2 k_{2}$ for some $k_{2} \in \mathbb{Z} \quad$ Definition of even.
$\therefore 3 x+4 y=3(2 k+1)+4\left(2 k_{2}\right)$

$$
\begin{aligned}
& =6 k+3+8 k_{2} \\
& =2\left(3 k+4 k_{2}+1\right)+1 \quad \text { Plug in \& simplify }
\end{aligned}
$$

$\therefore 3 x+4 y$ is odd.
Definition of odd.

OR

Assume x is odd and y is even. Then $x=2 k+1$ and $y=2 k_{2}$ for some integers k, k_{2}. Plug these into our desired expression to get:
$3 x+4 y=3(2 k+1)+4\left(2 k_{2}\right)=6 k+3+8 k_{2}=2\left(3 k+4 k_{2}+1\right)+1$
Therefore by the definition of odd, we see that $3 x+4 y$ is odd.

9) Let x be a real number. Prove that if x is rational, then twice x is also rational. That is,

$$
x \in \mathbb{Q} \Rightarrow 2 x \in \mathbb{Q}
$$

Assume x is rational. Then we may write $x=\frac{a}{b}$ for some $a, b \in \mathbb{Z}$. Therefore $2 x=\frac{2 a}{b}$ which also satisfies the definition of rational because $2 a$ is also an integer.

OR

Assume $x \in \mathbb{Q}$
$\therefore x=\frac{a}{b}$ for some a, b in $\mathbb{Z} \quad$ Definition of rational.
$\therefore 2 x=\frac{2 a}{b}$
Multiply the above by 2 .
$\therefore 2 x \in \mathbb{Q}$
Definition of rational.

10) Let x be a real number. If $x^{3}+2 x^{2}<0$, then $2 x+5<11$

Assume $x^{3}+2 x^{2}<0$.
$\therefore x^{2}(x+2)<0$
Factor
$\therefore x+2<0$
$\therefore 2 x+4<0$
$\therefore 2 x+5<1$
Positivity axiom and the fact that $x^{2}>0$
Multiply the above by 2 .
Add 1 to each sides of the above.
$\therefore 2 x+5<11$
Transitive property on the above and $1<11$.
OR
Assume $x^{3}+2 x^{2}<0$. Note that $x^{3}+2 x^{2}=x^{2}(x+2)$ and that $x^{2}>0$. Therefore by the positivity axiom we get $x+2<0$. Some basic algebra then gives us:

$$
2 x+5=(x+2)+(x+2)+1<0+0+1<11
$$

OR use the contrapositive - | think most high scoring proofs did it that method, they look something like this:
$2 x+5 \geq 11$
[math]
$\therefore x \geq 3$
$\therefore x^{3}+2 x^{2} \geq[$ math $] \geq 0$

11) Consider this supposed theorem: "If n is even, then lightsabers are real". We may have a difficult time proving this theorem, but it is hopefully pretty clear what the first two lines and last line of such a proof would likely be. Fill in those blanks below. You need not provide justification.

Proof that if n is even, then lightsabers are real

1) Assume n is even.
2) $\therefore n=2 k$ for some $k \in \mathbb{Z}$
!
[Intermediate steps are omitted]
!
3) \therefore lightsabers are real.

Now suppose we have a difficult time proving this theorem, so we turn to the contrapositive! We may still have a difficult time proving the theorem, but again it should be clear what the first and last two lines of such a proof would likely be. Fill in those blanks below. You need not provide justification.

Proof that if n is even, then lightsabers are real

1) Lightsabers at not real.
!
[Intermediate steps are omitted]
:
2) $\therefore n$ is not even.
3) Therefore, if n is even, then lightsabers are real

2-point Bonus: What should would 12 in the above proof likely be?
12) n is odd or $n=2(\cdots)+1$

