Name \qquad Test 3, Fall 2022

Note that 331 is prime, in case that is relevant at some point.

Part 1: Basic Knowledge

1) What does $a \equiv b$ mod m mean? Hint: Don't write a sentence, just give the mathematical "tool" (5 points)
2) Let $f: A \rightarrow B$ be a function. What does it mean for f to be surjective? Give a precise definition. (5 points) Hint: onto is a synonym of surjective.

Part 2: Basic Skills and Concepts

3) Answer each of the following. (1 points each)

T F a) $6 x \equiv_{300} 1$ has a exactly 1 solution.
T F b) $6 x \equiv_{300} 12$ has exactly 1 solution.
T F c) $6 x \equiv_{331} 1$ has exactly 1 solution.
T F d) If $a \equiv_{331} b$, then $a \equiv_{662} b$.
T Fe) If $a \equiv_{662} b$, then $a \equiv_{331} b$.
4) Find the intersection below. (5 points)

$$
\bigcap_{k=1}^{\infty}\left[\frac{1}{k}, 5+\frac{1}{k}\right)
$$

5) Solve $3 x+2 \equiv 9 \bmod 10(5$ points $)$
6) Solve $2 x+8 \equiv 4 \bmod 10(5$ points $)$
7) Solve $330 x \equiv 1 \bmod 331$ (2 bonus points)

Part 3: Proofs (10 points each, 60 points total)
8) Prove that multiplication in \mathbb{Z}_{n} is well defined.
9) Prove the following:

$$
1 \in \bigcup_{k=1}^{\infty}\left(\frac{1}{k}, 10-\frac{1}{k}\right)
$$

10) Prove the function below is injective.

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto 8 x+2
\end{aligned}
$$

11) Prove the function below is surjective.

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto 6 x+5
\end{aligned}
$$

12) Prove the inequality below for all integers $n \geq 7$. $3^{n}<n!$
13) Prove the equality below for all integers $n \geq 1$.

$$
\sum_{m=1}^{n}(-1)^{m+1} m^{2}=\frac{(-1)^{n+1} n(n+1)}{2}
$$

Part 4: Review

14) Let A, B, and C be sets. Draw a Venn Diagram to illustrate $A \cap(B \cup C)$. (5 points)
15) What is the term used to describe the mistake when a proof writer assumes the conclusion they're trying to prove? (5 points)
(A) Conclusion Reasoning
(B) Concussion Reasoning
(C) Circular Reasoning
(D) Implication Reasoning
(E) Wrap-around Reasoning
