Name \qquad

Note that 331 is prime, in case that is relevant at some point.

Part 1: Basic Knowledge

1) What does $a \equiv b$ mod m mean? Hint: Don't write a sentence, just give the mathematical "tool" (5 points)

$$
m \mid a-b
$$

2) Let $f: A \rightarrow B$ be a function. What does it mean for f to be suriective? Give a precise definition. (5 points) Hint: onto is a synonym of surjective.

For every $b \in B$, there is an $a \in A$ such that $f(a)=b$
OR
$\forall_{b \in B} \exists_{a \in A}(f(a)=b)$
OR
For every element in the codomain B, there is something in the domain A that maps to it via f.

Part 2: Basic Skills and Concepts

3) Answer each of the following. (1 points each)

T(Fa) $6 x \equiv_{300} 1$ has a exactly 1 solution.
T(F)b) $6 x \equiv_{300} 12$ has exactly 1 solution.
(T) F c) $6 x \equiv_{331} 1$ has exactly 1 solution.

T(Fd) If $a \equiv_{331} b$, then $a \equiv_{662} b$.
(T) F e) If $a \equiv_{662} b$, then $a \equiv_{331} b$.

Look at mod 2 and 4 to make sense of these last two.

4) Find the intersection below. (5 points)

$$
\bigcap_{k=1}^{\infty}\left[\frac{1}{k}, 5+\frac{1}{k}\right)
$$

$$
[1,6) \cap[0.5,5.5) \cap[0 . \overline{3}, 5 . \overline{3}) \cap \cdots=[1,5]
$$

5) Solve $3 x+2 \equiv 9 \bmod 10(5$ points $)$
$3 x \equiv 7$
$7 \cdot 3 x \equiv 7 \cdot 7$
$x \equiv 49$
$x \equiv 9$

6) Solve $2 x+8 \equiv 4 \bmod 10(5$ points)
$2 x \equiv-4$
$2 x \equiv 6$

x	$2 x$
0	0
1	2
2	4
3	6
4	8
5	0
6	2
7	4
8	6
9	8

$x \equiv 3,8$

OR
[relevant work]
$x \equiv_{5} 3$

7) Solve $330 x \equiv 1 \bmod 331$ (2 bonus points)

$$
\begin{aligned}
& 330 x \equiv 1 \\
& -x \equiv 1 \\
& x \equiv-1 \\
& x \equiv 330
\end{aligned}
$$

Part 3: Proofs (10 points each, 60 points total)
8) Prove that multiplication in \mathbb{Z}_{n} is well defined.

All equivalences in this proof will be $\bmod n$.
Let $a_{1} \equiv a_{2}$ and $b_{1} \equiv b_{2}$.
$\therefore n \mid a_{1}-a_{2}$ and $n \mid b_{1}-b_{2}$
$\therefore a_{1}-a_{2}=n k_{a}$ and $b_{1}-b_{2}=n k_{b}$ for some integers k_{a} and k_{b}.
$\therefore\left(a_{1}-a_{2}\right)\left(b_{1}-b_{2}\right)=n k_{a}-n k_{b}$
$\therefore a_{1} b_{1}-a_{2} b_{1}-a_{1} b_{2}+a_{2} b_{2}=n k_{a}-n k_{b}$
$\therefore a_{1} b_{1}=n k_{a}-n k_{b}+a_{2} b_{1}+a_{1} b_{2}-a_{2} b_{2}$
$\therefore a_{1} b_{1}-a_{2} b_{2}=n k_{a}-n k_{b}+a_{2} b_{1}+a_{1} b_{2}-2 a_{2} b_{2}$
$\therefore a_{1} b_{1}-a_{2} b_{2}=n k_{a}-n k_{b}+\left(a_{2} b_{1}-a_{2} b_{2}\right)+\left(a_{1} b_{2}-a_{2} b_{2}\right)$
$\therefore a_{1} b_{1}-a_{2} b_{2}=n k_{a}-n k_{b}+\left(a_{2} n k_{b}\right)+\left(n k_{a} b_{2}\right)$
$\therefore n \mid a_{1} b_{1}-a_{2} b_{2}$
$\therefore a_{1} b_{1} \equiv a_{2} b_{2}$
This isn't the easiest or cleanest proof. But it's a little more ... pedagogical ... than what is cleaner.

Question 8 r=0.944

9) Prove the following:

$$
1 \in \bigcup_{k=1}^{\infty}\left(\frac{1}{k}, 10-\frac{1}{k}\right)
$$

This is obvious by pulling out the $k=2$ term:

$$
1 \in\left(\frac{1}{2}, 9.5\right) \subseteq \bigcup_{k=1}^{\infty}\left(\frac{1}{k}, 10-\frac{1}{k}\right)
$$

10) Prove the function below is injective.

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto 8 x+2
\end{aligned}
$$

Let $a, b \in \mathbb{R}$
Assume $f(a)=f(b)$
$\therefore 8 a+2=8 b+2$
$\therefore 8 a=8 b$
$\therefore a=b$
Therefore f is injective.

Question 10 r=0.951						
$\left.\begin{array}{l}9 \\ 8\end{array}\right]$					\bullet	
7.					\bullet	
6.					-	
5.					-	
4.					\bullet	
3.					-	
2.					-	
1					\bullet	
0						\checkmark
0	2	4	6	8	10	12

11) Prove the function below is surjective.

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto 6 x+5
\end{aligned}
$$

Assume $b \in \mathbb{R}$
Choose $a=\frac{b-5}{6}$
$\therefore f(a)=f\left(\frac{b-5}{6}\right)=6\left(\frac{b-5}{6}\right)+5=b-5+5=b$
Therefore f is surjective.

12) Prove the inequality below for all integers $n \geq 7$.

$$
3^{n}<n!
$$

Base case ($n=7$):

$$
3^{7}=3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \leq 3 \cdot 3 \cdot 27 \cdot 9 \leq 3 \cdot 4 \cdot 30 \cdot 14=3 \cdot 4 \cdot(5 \cdot 6) \cdot(7 \cdot 2)=7!
$$

Inductive Step:
Assume $3^{k}<k$! For some integer $k \geq 7$.
$\therefore 3^{k+1}=3 \cdot 3^{k}<3 \cdot k!<k k!<(k+1) k!=(k+1)!$
$\therefore 3^{k+1}<(k+1)$!
$\therefore 3^{n}<n$! For all integers $n \geq 7$

A note on the base case:
Hopefully it's obvious I didn't expect you to calculate 3^{7}, you don't have a calculator. If you don't see a clever way to do it like I did, there's another approach. Remember the goal on a test is to communicate what you know, this is probably how I would have solved it in a testing environment:

If $n \geq 9$ it's obvious because each 3 can be replaced:

$$
3^{9}<3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9<9!
$$

For $n=7$ and $n=8$ it can be solved easily on a calculator.

SERIOUSLY - SO MANY PEOPLE COMPUTED 3^{7} and 7 ! WHY?? DON’T DO THAT, IT TAKES UP TOO MUCH TIME ON A TEST!!!!

13) Prove the equality below for all integers $n \geq 1$.

$$
\sum_{m=1}^{n}(-1)^{m+1} m^{2}=\frac{(-1)^{n+1} n(n+1)}{2}
$$

Base Case ($n=1$):
$\sum_{m=1}^{1}(-1)^{m+1} m^{2}=(-1)^{2} 1^{2}=1$
$\frac{(-1)^{1+1} \cdot 1 \cdot(1+1)}{2}=\frac{2}{2}=1$
$\therefore \sum_{m=1}^{1}(-1)^{m+1} m^{2}=\frac{(-1)^{1+1} \cdot 1 \cdot(1+1)}{2}$
Inductive Step:
Assume $\sum_{m=1}^{k}(-1)^{m+1} m^{2}=\frac{(-1)^{k+1} k(k+1)}{2}$ for some $k \in \mathbb{N}$.

$$
\begin{gathered}
\therefore \sum_{m=1}^{k+1}(-1)^{m+1} m^{2}=\sum_{m=1}^{k}(-1)^{m+1} m^{2}+(-1)^{k+2}(k+1)^{2}=\frac{(-1)^{k+1} k(k+1)}{2}+(-1)^{k+2}(k+1)^{2} \\
=(-1)^{k+2}\left[\frac{-k(k+1)}{2}+\frac{2(k+1)^{2}}{2}\right] \\
=(-1)^{k+2}(k+1)\left[\frac{-k}{2}+\frac{2(k+1)}{2}\right] \\
=(-1)^{k+2}(k+1)\left[\frac{-k+2 k+2}{2}\right] \\
=\frac{(-1)^{k+2}(k+1)(k+2)}{2}
\end{gathered}
$$

Therefore by induction $\sum_{m=1}^{n}(-1)^{m+1} m^{2}=\frac{(-1)^{n+1} n(n+1)}{2}$ for all $n \in \mathbb{N}$

Grading note: I intended/expected this to be the hardest proof. Once you get into it I don't think it's that hard, but it has an intimidation factor: especially considering the homework didn't have any exercises with a $(-1)^{m}$ term. This was probably as "outside the box" as an equality induction problem can get.

Part 4: Review

14) Let A, B, and C be sets. Draw a Venn Diagram to illustrate $A \cap(B \cup C)$. (5 points)

15) What is the term used to describe the mistake when a proof writer assumes the conclusion they're trying to prove? (5 points)
(A) Conclusion Reasoning
(B) Concussion Reasoning
(C) Circular Reasoning
(D) Implication Reasoning
(E) Wrap-around Reasoning

