Note that 331 is prime, in case that is relevant at some point.

Part 1: Basic Knowledge

1) What does $a \equiv b \mod m$ mean? Hint: Don't write a sentence, just give the mathematical "tool" (5 points)

2) Let $f: A \rightarrow B$ be a function. What does it mean for f to be <u>surjective</u>? Give a precise definition. (5 points) Hint: <u>onto</u> is a synonym of surjective.

For every $b \in B$, there is an $a \in A$ such that f(a) = b

OR

 $\forall_{b\in B} \exists_{a\in A} (f(a) = b)$

OR

For every element in the codomain B, there is something in the domain A that maps to it via f.

Part 2: Basic Skills and Concepts

3) Answer each of the following. (1 points each)

- T(F)) $6x \equiv_{300} 1$ has a exactly 1 solution.
- T(F)) $6x \equiv_{300} 12$ has exactly 1 solution.
- **(T)** F c) $6x \equiv_{331} 1$ has exactly 1 solution.

T (F)d) If $a \equiv_{331} b$, then $a \equiv_{662} b$.

(T) F e) If $a \equiv_{662} b$, then $a \equiv_{331} b$.

Look at mod 2 and 4 to make sense of these last two.

4) Find the intersection below. (5 points)

$$\bigcap_{k=1}^{\infty} \left[\frac{1}{k}, 5 + \frac{1}{k} \right]$$

$$[1,6) \cap [0.5,5.5) \cap [0,\overline{3},5.\overline{3}) \cap \dots = [1,5]$$

5) Solve $3x + 2 \equiv 9 \mod 10$ (5 points)

 $3x \equiv 7$ $7 \cdot 3x \equiv 7 \cdot 7$ $x \equiv 49$ $x \equiv 9$

6) Solve $2x + 8 \equiv 4 \mod 10$ (5 points)

$$2x \equiv -4$$
$$2x \equiv 6$$

x	2 <i>x</i>
0	0
1	2
2	4
3	6
4	8
5	0
6	2
7	4
8	6
9	8

 $x \equiv 3, 8$

OR

[relevant work]

 $x \equiv_5 3$

7) Solve $330x \equiv 1 \mod 331$ (2 bonus points)

 $330x \equiv 1$ $-x \equiv 1$ $x \equiv -1$ $x \equiv 330$

Part 3: Proofs (10 points each, 60 points total)

8) Prove that multiplication in \mathbb{Z}_n is well defined.

All equivalences in this proof will be mod n.

Let $a_1 \equiv a_2$ and $b_1 \equiv b_2$. $\therefore n|a_1 - a_2$ and $n|b_1 - b_2$ $\therefore a_1 - a_2 = nk_a$ and $b_1 - b_2 = nk_b$ for some integers k_a and k_b . $\therefore (a_1 - a_2)(b_1 - b_2) = nk_a - nk_b$ $\therefore a_1b_1 - a_2b_1 - a_1b_2 + a_2b_2 = nk_a - nk_b$ $\therefore a_1b_1 = nk_a - nk_b + a_2b_1 + a_1b_2 - a_2b_2$ $\therefore a_1b_1 - a_2b_2 = nk_a - nk_b + a_2b_1 + a_1b_2 - 2a_2b_2$ $\therefore a_1b_1 - a_2b_2 = nk_a - nk_b + (a_2b_1 - a_2b_2) + (a_1b_2 - a_2b_2)$ $\therefore a_1b_1 - a_2b_2 = nk_a - nk_b + (a_2n_b) + (nk_ab_2)$ $\therefore n|a_1b_1 - a_2b_2$ $\therefore a_1b_1 \equiv a_2b_2$

This isn't the easiest or cleanest proof. But it's a little more ... pedagogical ... than what is cleaner.

9) Prove the following:

$$1 \in \bigcup_{k=1}^{\infty} \left(\frac{1}{k}, 10 - \frac{1}{k}\right)$$

This is obvious by pulling out the k = 2 term:

$$1 \in \left(\frac{1}{2}, 9.5\right) \subseteq \bigcup_{k=1}^{\infty} \left(\frac{1}{k}, 10 - \frac{1}{k}\right)$$

10) Prove the function below is injective.

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto 8x + 2$$

Let $a, b \in \mathbb{R}$ Assume f(a) = f(b) $\therefore 8a + 2 = 8b + 2$ $\therefore 8a = 8b$ $\therefore a = b$ Therefore f is injective.

11) Prove the function below is surjective.

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto 6x + 5$$

Assume $b \in \mathbb{R}$ Choose $a = \frac{b-5}{6}$ $\therefore f(a) = f\left(\frac{b-5}{6}\right) = 6\left(\frac{b-5}{6}\right) + 5 = b - 5 + 5 = b$ Therefore f is surjective.

12) Prove the inequality below for all integers $n \ge 7$.

```
3^n < n!
```

Inductive Step: Assume $3^k < k!$ For some integer $k \ge 7$. $\therefore 3^{k+1} = 3 \cdot 3^k < 3 \cdot k! < kk! < (k+1)k! = (k+1)!$ $\therefore 3^{k+1} < (k+1)!$

 $\therefore 3^n < n!$ For all integers $n \ge 7$

A note on the base case:

Hopefully it's obvious I didn't expect you to calculate 3⁷, you don't have a calculator. If you don't see a clever way to do it like I did, there's another approach. Remember the goal on a test is to communicate what you know, this is probably how I would have solved it in a testing environment:

If $n \ge 9$ it's obvious because each 3 can be replaced: $3^9 < 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 < 9!$ For n = 7 and n = 8 it can be solved easily on a calculator.

SERIOUSLY – SO MANY PEOPLE COMPUTED 3⁷ and 7! WHY?? DON'T DO THAT, IT TAKES UP TOO MUCH TIME ON A TEST!!!!

13) Prove the equality below for all integers $n \ge 1$.

$$\sum_{m=1}^{n} (-1)^{m+1} m^2 = \frac{(-1)^{n+1} n(n+1)}{2}$$

Base Case (n = 1):
$$\sum_{m=1}^{1} (-1)^{m+1} m^2 = (-1)^2 1^2 = 1$$
$$\frac{(-1)^{n+1} (-1)^{n+1} m^2}{2} = \frac{2}{2} = 1$$
$$\therefore \sum_{m=1}^{1} (-1)^{m+1} m^2 = \frac{(-1)^{n+1} (-1)^{n+1}}{2}$$

Inductive Step:

...

Assume $\sum_{m=1}^{k} (-1)^{m+1} m^2 = \frac{(-1)^{k+1} k(k+1)}{2}$ for some $k \in \mathbb{N}$.

$$\therefore \sum_{m=1}^{k+1} (-1)^{m+1} m^2 = \sum_{m=1}^{k} (-1)^{m+1} m^2 + (-1)^{k+2} (k+1)^2 = \frac{(-1)^{k+1} k (k+1)}{2} + (-1)^{k+2} (k+1)^2 \\ = (-1)^{k+2} \left[\frac{-k(k+1)}{2} + \frac{2(k+1)^2}{2} \right] \\ = (-1)^{k+2} (k+1) \left[\frac{-k}{2} + \frac{2(k+1)}{2} \right] \\ = (-1)^{k+2} (k+1) \left[\frac{-k+2k+2}{2} \right] \\ = \frac{(-1)^{k+2} (k+1) (k+2)}{2}$$

Therefore by induction $\sum_{m=1}^{n} (-1)^{m+1} m^2 = \frac{(-1)^{n+1} n(n+1)}{2}$ for all $n \in \mathbb{N}$

Grading note: I intended/expected this to be the hardest proof. Once you get into it I don't think it's that hard, but it has an intimidation factor: especially considering the homework didn't have any exercises with a $(-1)^m$ term. This was probably as "outside the box" as an equality induction problem can get.

Part 4: Review

14) Let A, B, and C be sets. Draw a Venn Diagram to illustrate $A \cap (B \cup C)$. (5 points)

15) What is the term used to describe the mistake when a proof writer assumes the conclusion they're trying to prove? (5 points)

- (A) Conclusion Reasoning
- (B) Concussion Reasoning
- C Circular Reasoning
- (D) Implication Reasoning
- (E) Wrap-around Reasoning

