Name \qquad

Part 1: Basic Knowledge (5 points each, 20 points total)
For each problem, give a precise definition.

1) What does it mean for an integer to be even?
2) Let A and B be sets in some fixed universe U. What is the intersection of A and B ?
3) Let A be a set. What does the notation $x \in A$ mean?
4) What is a statement?

Part 2: Basic Skills and Concepts (5 points each, 20 points total)
5) Find the truth table for $(P \wedge Q) \Rightarrow R$ where P, Q, and R are statements.
6) Find the negation of:

$$
\forall_{x \in \mathbb{Z}} \exists_{y \in \mathbb{Z}}\left(x y+y=x^{2}\right)
$$

7) Draw a Venn Diagram illustrating the set $(A \cap B) \cup C$
8) What $([4,7] \cup(5,9)) \cap \mathbb{Z}$?

Part 4: Proofs (10 points each, 60 points total)
9) Let P, Q, and R be statements. Prove that:

$$
((P \Rightarrow(Q \Rightarrow R)) \wedge(P \Rightarrow Q) \wedge P) \Rightarrow R
$$

10) Let n be an even integer. Prove that n^{2} is even.
11) Let A and B be sets. Prove that if $A \subseteq B$, then $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
12) Let n be an integer. If $6 \mid n$, prove that $3 \mid n$.
13) Prove that for every natural number $n, \frac{1}{n} \leq 1$.
(We are not including 0)
14) Prove that $\sqrt{5}$ is irrational ... just kidding. We'll save that for later. Instead, prove that there exists a rational number.
